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1 Introduction

In this article, we will talk about decision tree (DT), Gradient Boosting decision tree (GBDT), random forest
(RF) and Extreme Gradient Boosting (XGBoost). The main problem of Decision tree is how to decide the root.
As long as one can find a criteria to determine the root, then one can repeat the procedure to decide the nodes
of the whole decision tree until meet the stop criteria.

2 Decision Tree
FESLIRENS ) 0 REFAE IR : RATBEMHEA D AR TER AL, HIRATREL— PR T E R R
JBTFR—1 KA. Bedh A TR EEE " =M%
e Gini impurity « classification tree (CART for classification)
e Information gain « classification tree (ID3 and C4.5)
o variance reduction < regression tree (CART)
Decision tree models could be classified into two types based on the type of target variable.
e classification trees if the target variable can take a discrete set of values
e regression trees if the target variable can take continuous values
Decision trees have several nice advantages over nearest neighbor algorithms:

1. Once the tree is constructed, the training data doesn’t need to be stored. Instead, we can simply store
how many points of each label ended up in each leaf-typically these are pure so we just have to store the
label of all points

2. decision trees are very fast during test time, as test inputs simply need to traverse down the tree to a
leaf-the prediction is the majority label of the leaf

3. decision trees require no metric because the splits are based on feature thresholds and not distances.

2.1 Gini impurity

Gini impurity is used by the CART (Calssification and Regression Tree) algorithm for classification trees which
is first introduced by Breiman[?] in 1894. Gini impurity is a measure of how often a randomly chosen element
from the set would be incorrectly labeled if it was randomly labeled according to the distribution of labels in
the subset. The Gini impurity can be computed by summing the probability p; of an item with label k£ being
chosen times the probability >, 2k Pk =1 — pi of a mistake in categorizing that item. It reaches its minimum
(zero) when all cases in the node fall into a single target category.

Let S = {(x1,¥1), s Xn,yn)},yi € {1,...,c} be a set of data pairs, ¢ is the number of classes. To compute
Gini impurity for a set of items with ¢ classes, suppose k € {1,2,...,c} and let S C S where S, = {(x,y) €
S :y =k} be the set of all inputs with labels k, S =57 U...U S, then, p; = % is the fraction of items in S

labeled with class k in the set, then
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Figure 1: The Gini Impurity Function in the binary case reaches its maximum at p = 0.5. A node that has all
classes of the same type (perfect class purity) will have G = 0, where a node that has a half and half split of
classes for a binary classification problem (worst purity) will have a G = 0.5.

Gini impurity of a feature with value a; is

G(S,A=a)=G(S)=1— Z Pr(k|A = a;)? 2)

k=1

Gini impurity (Gini index) of a feature A is defined by

N I PPP R [ g |SM]
G(S,A) = mG(S )+ mG(s Y4+ WG(SN) (3)

where
e S=5ty..usSN

StNSI =0 fori#j

N « total number of all possible values a; of feature A

S1 < the collection of instances that has A = a;

||Ssl‘| + fraction of inputs/instances that has A = a;

2.1.1 How to build a decision tree using gini impurity
Creating a decision tree involves two steps:
e select best input variables (features) to split
e select best split points on these features until a suitable tree is constructed.

The selection of which input variable to use and the specific split or cut-point is chosen using a greedy algo-
rithm to minimize a cost function (Gini impurity function). Tree construction ends using a predefined stopping
criterion, such as a minimum number of training points assigned to each leaf node of the tree, the maximum
depth of a tree.



2.1.2 Classification Tree (CART binary tree ZXH)

The cost function is Gini impurity function. The smaller the impurity, the purer the data. A greedy approach
is used to divide the space called recursive binary splitting. This is a numerical procedure where all the values
are lined up and different split points are tried and tested using a cost function. The split with the best cost
(lowest cost because we minimize cost) is selected. All input variables (features) and all possible split points
are evaluated and chosen in a greedy manner.

Algorithm:

1. Let S be the dataset in current node, then, one compute G(S, A) for all features. ¥ TH—4FEA, X
SR RERI G — B fa, SRR A = oy B9 Yes' or No S HHIRST, 57, IRIGHHG(S, A = ay)

2. FERTH AT RERVRFIEAROMA 1T AT READ Y] 7 R, 1P FF Gind index B/ NRFIEA* S HN B I 70 mla* B
RAFAEAEAL T 93 5, SRJEARYE —F AR 7 77 5, R SR F B HEAT) 59 s 2 BC B W 1777 .

2.1.3 Variance Reduction and Regression Tree

In regression case, the key idea is to approximate the regression function between input x and target label y by
piecewise const function.
In regression case, we assume labels are continuous y; € R, then, the cost function (Impurity) is

L(S) = 5] Z (4 — 95)? < average squared difference from average label (4)
(x,y)€S
where 75 = I—é‘ > (x.y)es Y < average label,  is prediction. Variance reduction L& 5T A TRT URTE G0 T 465
SRR EORAT G X FECRUEY) 5 s 20 A0 WA 0 XIS 220 77 2380 R /N RIS, ORAE > XIS B N 7 22 2 0
R/ -
Iaisng(j75) = ngn Z (yi—c1)? + ngn Z (yi — c2)° (5)
z;€RL (4,5) z;€RR(4,5)

TR B A P IR

1. determine the best split feature j and best split point s by solving eq W (traverse) HFAE;, X [&E
RE AV Rs, RS BRI, s7) pairs,

2. FERE (5%, s*) pairs X KEGHETRIS, H HREMM A HE: Re(j,s) = {z]z0) > s}

Cm = N, Z Yi (6)
z; €ERy, (4,8)
where z € R,,,,m = L, R, Ry (j,5) = {z|z() < s},
R AT AR RN - Ny
f@) =) ém-x(x€Rp) (7)

m=1

RS A B AR FER R 9 M KR .., Ry

Kf#min; ; g(4, s) BT HE:
1. determine (c}, ¢}) for given (j,s) by taking derivative of eq§ w.r.t ¢,

min Y (i —cm)? (®)

2 €Rm (4,8)

*

so that one can get ¢},

by assigning 0 to derivative,

> 2yi—¢,)=0 )

z; €ERy, (4,8)

N 1
= = W Z Yi (10)

l'ieRm(jas)

where N, = [R,,(7,5)| + XIHR,, FinstancesfIELH, (j,s) is fixed.



2. determine (j*,s*) where j is index of feature (finite many) and s is index of possible value of a feature
(could be finite many/discrete, could be infinitely many/continuous). T 45 % FI—XF(4,5), i Hci, co
by eq@, RIETNG(4,s) = c1 +c2, WIHFTE (4, s), 8Fmin, s g(j, s) = &1 + o

e For discrete feature, one can determine (j*, s*) by traversing all possible cases.

e For continuous feature, one discretizes the continuous feature according to the following rule: (used
in both CART and C4.5) m MERPESHFHEA Am NBUEay, ..., apn,, WCARTHURE SR FEAE 1)F
PEWERRI D S, —HBm — 11, EF i splitting point is s; = %‘“H,z =1.m-1

Summary of CART:
e CART generates binary tree
e CART needs to determine optimal splitting feature and optimal splitting point

e It is very time consuming for CART to handle discrete variables with too many possible values. For
example, if a discrete variable has m possible values, then, there will be 2™ — 2 possible splitting results
(empty set and whole set are useless), one has to compute the gini index for all these cases, to determine
the node

e How to deal with continuous features in classification tree? Same discretization as used in regression.

e A feature could be reused in CART

2.2 Information Gain

Information gain is used by ID3, C4.5 and C5.0 tree-generation algorithms. Information gain is based on the
concept of entropy and information content from information theory.

2.2.1 Entropy and Information Gain

1
Entropy: From the above Figure we know p; = ps = ... = p. = — is the worst case (enemy) since each leaf is
equally likely. Prediction is random guessing. Define the impurity as how close we are to uniform distribution.
We can use KL divergence to compute the ’closeness’. We expect that p is far away from uniform distribution
q. In the discrete case,

- Pk
Dk r(pllg) = ZPIJOQ* (11)
1 dk
. 1
if g = e for k=1,... ¢, then
1 - Dk
D -) = dog— 12
rL(pll7) ;pk Eyr (12)
C (&
= Zpklogpk + Zpklogc + log(c) is a const Zpk =1 (13)
k=1 k=1 k
= prlogp + loge (14)

k=1
Hence, To maximize the KL divergence is equivalent to minimize entropy:
C C
max Zpklogpk = min — Zpklogpk + Entropy (15)
- O
where p, ¢ are distributions in dataset S.
Information Gain: Information Gain (used in ID 3 algorithm and C4.5 algorithm) is defined based on the

entropy and condition entropy.
The entropy of a set S with ¢ classes is defined by

H(S) = - ZpilO!h(pi) (16)



Information gain on feature A with value a is defined by

IG(S,a) = H(S) — H(S|a) = = > _pilogap; — »_ —Pr(ila)loga Pr(i|a) (17)
i=1 i=1

where

e JG(S,a) < the information gain of feature A with value a.

H(S) + parent entropy which is a const as long as the parent node is determined

H(S|a) < sum of children entropies (sum over all classes)

p; + fraction/probability of items in set .S labeled with class 4

Pr(ila) < The probability of an instance being labeled class ¢ conditioned on A = a
Information gain on feature A is defined by averaing over all the possible values of A:

IG(S, A)) := BA(IG(S, a)) = H(S) — H(S|A) (18)
== pilogopi =Y pla Z —Pr(ila)log: Pr(ila) (19)
i=1 a

where p(a) « probability of feature A has value a.
Note that H(S) is a const when the parent node is determined, hence, maximize the information gain of feature
A, IG(S, A), is equivalent to minimize the entropy of feature A, H(S|A).

2.2.2 ID3 algorithm for polytree for classification (% X#)

Information gain is used to decide which feature to split on at each step in building the tree in ID3 algorithm.
The ID3 algorithm begins with the original set S as the root node. On each iteration of the algorithm, it iterates
through every unused attribute of the set S and calculates the entropy H(S) or the information gain IG(S)
of that attribute/feature. It then selects the attribute which has the smallest entropy (or largest information
gain) value. The set S is then split or partitioned by the selected attribute A (based on all its values a;) to
produce subsets of the data. (For example, a node can be split into child nodes based upon the subsets of the
population whose ages are less than 50, between 50 and 100, and greater than 100.) The algorithm continues
to recurse on each subset, considering only attributes never selected before.

Algorithm of ID3:

1. For each feature, compute the Info Gain IG(S, A) induvially, and then then choose the biggest one as the
split node A*.

2. Split the node into IV branches based on best split feature A* which has IV possible values.
The stop criteria is:

e All instances belong to the same class in this node, then, this node becomes leaf, and the class is the
corresponding label of this leaf.

e There is no more features to be split. This node becomes leaf and the corresponding label is determined
by majority voting.

Summary of ID3 algorithm:

e It is hard for ID3 to deal with continuous features since it is very time consuming. So people usually one
use ID3 for discrete features.

e ID3 generates classification tree not regression tree.

e every feature/variable only be used once in ID3.

2.3 Gain ratio and C4.58 s RE

Hﬂﬁ:Tm/ui=ﬁlll_f4=ﬁj\§u):@E’Jﬁ—utﬁﬁﬂ:l_T% ﬁﬁ%ﬂxﬁﬂﬁf P /AL, LA, *AfF—??E 'student ID’ RV it
RN B ERALR, Cstudent ID’HIE BSE i B EL (HEZ X B RN MEET 2 RTT
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2.3.1 Gain ratio
IG(S,A)

Gain ratio(S, A) = SI(A)

(20)

[}
nn

I(A) == — Zivzl %logg |§“ «— A WJEEE, splitting information

o ‘ﬁ;}' = p(A =), hence, ST(A) = — Zi\[:l p(A = v)logap(A = v)

e N < number of all possible values of feature A

2.3.2 C4.5 algorithm
1. Compute IG of all features to find the features that has IG larger than average IG as the candidates

2. compute the Gain ratio of candidates, choose the feature which has largest Gain ratio as the best feature
to split.

3. split the node into N branches based on the best split feature which has N possible values.

e For continuous feature, one discretizes the continuous feature according to the following rule: (used
in both CART and C4.5) m MEARPBESAFEA BEm MBEay, ..., am, MCARTHUFELR A (E 1
WEAERNRI 5, —HEBm — 11, EHEEiPsplitting point is s; = %‘H,z =1,...m-—1

o JEGUFERY, C45% Z X, BEEHERT R Z 73 X

Summary of C4.5

every feature/variable only be used once in C4.5

e (4.5 can eliminate the shortcomings of info Gain

C4.5 can handle continuous features automatically
AR T X, BEEFE: 20X
Remark: FrE BIEx R ATBIASKEE Mistop criteria #RH /M43 -

3 Random Forest

Tree ensemble methods includes 2 techniques:
e Bagging + RF
e Boosting < AdaBoost and XGBoost

RF is a successful case for tree ensemble method. The basic idea of generate a random forest is to sample data
and features with replacement many times (N) and then, build N trees using these sampled subsets in a parallel
fashion. The final prediction is made by majority voting.

3.1 Bagging/Bootstrap Aggregating
3.2 Advantage of Bagging and OOB (out of bag error)
3.3 RF

4 Introduction of XGBoost

XGBoost ¥ 7R”Extreme Gradient Boosting”, T”Gradient Boosting” & I T Friedmanf]1£ 3" Greedy func-
tion Approximation: A Gradient Boosting Machine”. Gradient Boosting = Gradient Descent 4+ Boosting,
MXGBoost s&Gradient Boosting I HR# LHL, BRI BT IERHAITIUIZE . (The gradient boosting al-
gorithm is the top technique on a wide range of predictive modeling problems, and XGBoost is the fastest
implementation.) The goal of XGBoost libaray is to push the extreme of the computation limits of machines to
provide a scalable, portable and accurate library. XGBoostsg —"1"A]¥ &, 441z Hgradient-boosted decision
tree (GBDT) machine learning library. It provides parallel tree boosting and is the leading machine learning
library of regression, classification, and ranking problem.



Figure 2: Caption
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4.1.1 REMSE
B ST ERITR O EOATIMERMAE (FFIE) Mm%k, FeeRastn

yi = (@)

— I H DL TR R AR R (BRI (R A M AR RTINBORAN, Rk NG = 3, 00 XTI (E
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4.1.2 BFrEE: g5+ EN 5

T E By, AT AFORARBESS, R, R - YISRERETLRY B bRt T 2 5E (615111 4%
Bl My, AFIREI SRR MR IZE0. Bk, h TGS, Bl FREE LHREEORE Ehow well the
model fit the training data.

H A ek B ) IR TR S PN ER Sy YIZRIT AN IE I

obj(0) = L(6) + Q(0) (21)

Hrp LFRRIIGRIR R KA, QFRRIEMI - YIZRI5 K pR £ ] DAET S A P& I SR AR PR SRR B, T L2 03
Al I ERT IS AR -
—H I ERIR R B E & mean square error

FHN—E DI ZRH 5% B AR FH Tlogistic regression f3I1 4735125 bR EL:

L(0) = [yin(1+e %) + (1 — y;)In(1 + e¥] (23)

i

IEMTR BT R B R, AR g il G - DUN R — PR REIE NI -
A% 27 3] P AR TR N Ay B H AT T AT AT LU S A0 TN BE 77 B0 [RT s SR TRl AT o e B PRk B0h B
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4.2 Decision Trees Ensembles

XGBoostfif A FE A Fdecision tree ensembles. MMitree ensemble T A1 & [B] JFHFI 4 254, B Bk — Lk
ZCART . —MEIAREWM AT e L HEE {%%ﬁ @ﬁﬁ\ ) - MCARTHIE MM F T A LEEME—
ME5> (score), X FEFA AT LURA—NRENVER), S—MHER00E# T - 85 B R A KEF K
)ﬂ TR, TSEER AR A SRES & ensemble model, @?JE%U”%%&W, IR 5 F I E W BOARIVE R B IS -
BEKER RN, FRRTE AT REFICARTM IS, fL Ko AU B FH ) — 1 %L, lensemble
model (FMME) FTLARRAN: ¢; = Zle fr(xs), fro € F, MFREMAH) BIRRER] IFRN:

K

obi(0) = Y1y + Y ) (24)

k=1

HAw(fo) W B 2R E, EHESFEHE L

Remark: Random Forest and XGBoostf) 3t [F] 5 & 5 T Tree ensemblefEAY 1 — 35 [ X F1] & 40 fa]
YIZR - #, — predictive service for tree ensemblef] L[] Ff Hrandom forest and XGBoost & A - RF/&
FA B H1.3% B fJsubsamples and subsets of features 73 7l I ZRKER B (bagging), IR Ja X KR KA (Or ma-
jority voting) 3B HALER - MXGBoost& LN F — 1 — M GRKEER , BRI #H 518 1FJ — 855 5%
# (boosting) - AT LA BIRFAIXGBoost 1 E’]*XTE’]{’EH%ET FER



4.3 Tree Boosting &t

HATHIE LA E L8 TR . IR I 4a [ E 40 T Rl &ﬂ]]ﬂ%fﬁﬁ”%/#ﬂ*ﬁ%‘? T RTE BB
S, AR AT LU & L — > B PR R BRI X A R EUS B R A

Boosting method FZR&FE[EZ LU T RI: ”Can a set of weak learners create a single strong learner?”

Boosting methodf## iR A BIFIAETE R (MLl Fres-net) A TEAE — P FFFIER, &— P EIER EHE
TER— MERDRIGRE I ORCR - RS — MEIE 2 & B — MEZEAN B 7K residual -

FATHD #RBOBHOTINE, T EE(basic learner /weaker learner) HIFIHELL My, FIECEEST
PAFRIE -

) + const (25)

IIMH

HAfi(x) e HBTHEANBENES -
HUMEA TR IS 240 B brer L

n T T
obj = Zl Z ) + const) + t_zlw 1) (26)

mathematically, T 1] DL IR AT
T

9 =arg min obj = arg min Zl Yi, Z ) + const) Z (ft) (27)

fte€EH t=1,...., T fteH t=1,..., — —1

T A B2 51 AT RO RBISE A0, T L IR AR TSR A9 7 Radditive training, H1BLEE]

E A% RIS, SRFEIR A — R . uit—Kk, B—%, FATH AFEMAWT BFrEat step
t:
fi =arg J{tnel% obj(t) (28)
n t n
obj(t) = Zl(y Qz(t) )+ Zw Zl yz,yZ -1 + fie(x:)) + w(fe) + const (29)
i=1 i=1 i=1

WS RE R Fw(f,), ARG — P AEREEE T, FrAHE HEH A Hconst.
FARBALE [ B % 1Lyt e At b5k B RReR 782
BATR L3k B AR RS SRR pR E g Y b AT Taylor expansionZl %,

n

b = S 1 5 0) 4 gi ) + i f7 () +w(fe) + const (30)

=1

Eng—a -l Wy 9, by = 62 s o Ly, 9

£I7‘J§§ty§|:ﬁuﬁ’ﬂ°%%”%‘fﬁlm Fﬁul(y“ g TV AT LA — AR, B, ZERETR R, LAt
LN T AL R

- 1
i () — i , N Zhe F2 (1 1
Mﬂgyw amﬁgéJmM%szﬁ@M+w%) (31)

Bt LU — B A Tt rT LUE S AL L3 BARRBORI B S AP RS (tree) .
X EVRRECERIA R — D EEREE . IR BRI T g;, by, BTUFATH — 1 RFE g, hAE BN
HsK g R IR R 4 B IR iR B %L (REFEE IS - This is how XGBoost supports custom loss

functions. We can optimize every loss function using exactly the same solver that takes g;, h; as input!

4.3.1 MWHEIGILE

FATIAER 2SRRI S A BR R IA T - XGBoost il fweaker learner is CART, I E 58 E L f ().
IRIG T UM B -
AT U S
fi(z) = wyuy,w € RT,q: R* — {1,2,..,T}. (32)

HrpwRTEM 77 5 L B915457 7] & (vector of scores on leaves) , g7 RiEE— 1 EE AL EAH R A+ /)
PBREL, TR THE



FEXGBoost ', FAEE LA .
=T + % > w? (33)
j=1

USRI R 7 1 R LB B0 F A . (L2IENIR)

4.3.2 The Structure Score
EEHE WA, AR DR B SR B PR R L

T

=1 7j=1

XA FRIR AL IR AP R R T L
T
obj® Z Z gi)wj + Z hi + Nw?)] +~T (35)

SRS R I AR, JRAE A I T AR R AL, B T o AR B R
HYiBSY, PRI EDRBTA I 1 A A

oL, = {ilq(e,) = j E B BRI M A0SR A TR A

FATA LIS RN, BIBAFER, G = ey, 900 Hy = Diey, hi

objt = ZT:[ijj + %(Hj + Nwi] +T (36)
=
S B, BTN, TG0, + 3(H, + N i, M TR M (), Bettw, 7Ll EER R
wh = HJGj-)\ (37)
T A E ISR, BT SR ES S
obj* = —% ZT: Hﬁ T (38)

j=1

AT DU R A & 26 18 10X MEERE Z1F - i.e. measure how good a tree structure g(x) is.
I, WACERE T B EWEEIN M RESRS (MM TR E) | ETRBATARERE
TN A B (45 1

4.3.3 ¥ BI4 M Learn the tree structure

MERNCERE] T — M EMSENRINEG 2RI, BREREEER, BT LEERD BT E T RERIR, &
JE R RIS o IRTTX T AR AISER), PrLl, Bl Prig e, t/ﬁﬂ%"ﬁ%f{mm B4
M (level-wise), L2, FA1ZHITEIL— D79 S0 K2 717506, B985 (the score this
split gains is) :

Gt Gh (GL +Gr)?
L B _9
Gain = X T e ) " Hor o D (39)
o 1 G2 G% (GL+GR)2
— — 4
Gain = 2[(HL+>\ Hr + A HL+HR+>\] (40)

159338 23 B IA R AT LA P AR 9

O i) e R RN DEE )
2. FEVEI T RS
3. FORMMHFI A (WARZEHHEM TR 855,

N

- REFF2AERIN T 5 B IE M5 o



HATIAE C A 5NE Il A B0 — 717 ST — IR R BRI RS 85 IR 2 Il RS i 9
7 5. (optimal split, iX B fEbest feature to split and the optimal value at this feature to split) Wg?

AT BTG 7 (Bl /) IRBRINFPHET, SRE WAESIEFIR, AT PuE 8 BT AT e 90340
LEMIRS S, MTHGER R R .

Remark: FATNE AT IR WRIE A/, BEABANTEARIZAT 03, THX At AT
FREBTCSRIE, 11 L5 HI2E 5 T Beli T H 4330 B RSB workss |

Two main questions:

a. What is the difference between the gradient descent in GBDT and gradient descent in deep learning?
learning rate/step size is fixed in GBDT, usually, Ir=0.01,

learning rate in

b.
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