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1 Introduction

In this note, we will introduce the derivation of AC and CH eqs in terms of gradient flow. The note is organized
as follows: In section (??), we clarify what is gradient flow in a given space/norm. Then, we derive Allen Cahn
eq and Cahn Hilliard eq.

1.1 Functional derivative and First variation

One of the most central problems in the calculus is to maximize or minimize a given real valued function of a
single variable. If f is a given function defined in an open interval I, then, f has a local (or relative) minimum
at a point x0 in I if f(x0) ≤ f(x) for all x, satisfying |x− x0| ≤ δ for some δ. If f has a local minimum at x0

in I and f is differentiable in I, then it is well known that

f ′(x0) = 0 (1)

where the prime denotes the ordinary derivative of f . Condition (1) is called a necessary condition for a local
minimum. If (1) holds, we say f is stationary at x0 and that x0 is an critical point of f . The calculus
of variations deals with generalizations of this problem from the calculus. Rather than find conditions under
which functions have extreme values, the calculus of variations deals with extremizing general quantities called
functionals.

Let A be a set of functions, then a functional on A is denoted J : A → R. A fundamental problem of
the calculus of variations can be stated as follows: Given a functional J and a well-defined set of functions A,
determine which functions in A affords a (local) minimum (or maximum) value to J . The set A is called the
set of admissible functions. The problem of extremizing a functional J over the set A is called a variational
problem.

1.1.1 Motivation of Derivatives of Functionals

For a variational problem we assume the set of admissible functions A is a subset of a normed linear space
V . Then the set A can inherit the norm and algebraic properties of the space V . Therefore the notions of
local minima and maxima make sense. If J : A → R is a functional on A, where A ⊆ V and V is a normed
linear space with norm || · ||, then J has a local minimum at y0 ∈ A, provided J(y0) ≤ J(y) for all y ∈ A with
||y − y0|| < d, for some positive number d. We call y0 an extremal of J and say J is stationary at y0.

To motivate the definition of a derivative of a functional, let us rewrite the limit definition of derivative of
a function f at x0 as

f(x0 + ∆x) − f(x0) = f ′(x0)∆x + o(∆x). (2)

The differential of f at x0, defined by df(x0,∆x) = f ′(x0)∆x, is the linear part in the increment ∆x of the
total change ∆f ≡ f(x0 + ∆x) − f(x0). That is

∆f = df(x0,∆x) + o(∆x). (3)

Let y0 ∈ A. To increment y0 we fix an element h ∈ V such that y0 + ϵh ∈ A for all ϵ ∈ R sufficiently small.
The increment ϵh is called the variation of the function y0 and is often denoted by δy0; that is δy0 ≡ ϵh. Then
we define the total change in the functional J due to the change ϵh in y0 by

∆J = J(y0 + ϵh) − J(y0). (4)

Our goal is to calculate the linear part w.r.t ϵ of this change. To this end, we define the ordinary function

J (ϵ) ≡ J(y0 + ϵh), (5)
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which is a function of a real variable ϵ defined by evaluating the functional J on the one parameter family of
functions y0 + ϵh. Assuming J is sufficiently differentiable in ϵ, we have

∆J = J (ϵ) − J (0) = J ′(0)ϵ + o(ϵ). (6)

Therefore, J ′(0)ϵ is like a differential for the functional J , being the linear part (or lowest order) of the increment
∆J .

Definition Let J : A → R be a functional on A, where A ⊆ V , V a normed linear space. Let y0 ∈ A and
h ∈ V such that y0 + ϵh ∈ A for all ϵ sufficiently small. Then the first variation (also the Gateaux derivative)
if J at y0 in the direction of h is defined by

δJ(y0, h) ≡ lim
ϵ→0

J(y + ϵh) − J(y)

ϵ
≡ J ′(0) ≡ d

dϵ
J(y0 + ϵh)

∣∣∣∣
ϵ=0

, (7)

provided the derivative exists. Such a direction h for eq((7)) exists is called an admissible variation at y0.
There is an analogy of δJ with a directional derivative. Let f(x) be a real valued function defined for

x = (x, y) ∈ R2, and let n = (n1, n2) be a unit vector. Then the derivative of f at x0 = (x0, y0) in the direction
n is defined by

Dnf(x) ≡ lim
ϵ→0

f(x0 + ϵn) − f(x0)

ϵ
.

1.1.2 First variation and functional derivative

Let the first variation/differential of functional be δJ(y0, h) and δJ
δy0(x)

be functional derivative. The functional

derivative δJ
δy0(x)

is the functional such that eq.((8)) is validate for arbitrary function h(x).

δJ(y0, h) ≡ d

dϵ
J(y0 + ϵh)

∣∣∣∣
ϵ=0

=

∫
δJ [y0(x)]

δy0(x)
h(x)dx =

(
δJ [y0(x)]

δy0(x)
, h(x)

)
, (8)

Hence, the first variation is a generalization of directional derivative and the functional derivative is a general-
ization of gradient. And eq.(8) states the relationship between directional derivative and gradient. When the
functional J is defined on Banach space, then, the functional derivative is called Frechet derivative.

1.1.3 First Example

Compute the first variation of

J(y) =

∫ b

a

yy′dx (9)

From the definition above,

δJ(y, h) =
d

dϵ
J(y + ϵh)

∣∣∣∣
ϵ→0

(10)

=
d

dϵ

∫ b

a

(y + ϵh)(y′ + ϵh′)dx

∣∣∣∣∣
ϵ→0

(11)

=
d

dϵ

∫ b

a

yy′ + ϵyh′ + ϵhy′ + ϵ2hh′dx

∣∣∣∣∣
ϵ→0

(12)

=

∫ b

a

yh′ + hy′ + 2ϵhh′dx

∣∣∣∣∣
ϵ→0

(13)

=

∫ b

a

yh′ + hy′dx. (14)
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1.1.4 Second example

Let A = {y ∈ C2[a, b] | y(a) = y0, y(b) = y1} Compute the functional derivative of the functional defined on
A,

J(y) =

∫ b

a

L(x, y, y′)dx, (15)

where y ∈ C2[a, b] and y(a) = y0, y(b) = y1. L is given, twice continuously differentiable function on [a, b]×R2.
, then, y ∈ A and h ∈ C2[a, b] and h(a) = h(b) = 0, then y + ϵh ∈ A. Then, by the definition of functional
derivative, we get

δJ(y, h) ≡ d

dϵ
J(y + ϵh)

∣∣∣∣
ϵ→0

=
d

dϵ

∫ b

a

L(x, y + ϵh, y′ + ϵh′)dx

∣∣∣∣∣
ϵ→0

=

∫ b

a

∂L(x, y + ϵh, y′ + ϵh′)

∂y
h +

∂L(x, y + ϵh, y′ + ϵh′)

∂y′
h′dx

∣∣∣∣∣
ϵ→0

=

∫ b

a

∂L(x, y, y′)

∂y
h +

∂L(x, y, y′)

∂y′
h′dx

=

∫ b

a

 Lyhdx−
∫ b

a

h
d

dx
Ly′dx + Ly′h|ba integration by parts

=

∫ b

a

(
Ly(x, y, y′) − d

dx
Ly′(x, y, y′)

)
hdx

To get the functional derivative, we need the following the fundamental lemma of calculus of variations:
If f(x) ∈ C[a, b] and if ∫ b

a

f(x)h(x)dx = 0 (16)

for every h ∈ C2[a, b] with h(a) = h(b) = 0, then, f(x) = 0 for x ∈ [a, b].
Then, by this Lemma and the definition of functional derivative, we get(

δJ [y(x)]

δy(x)
, h

)
= δJ(y, h) =

∫ b

a

(
Ly(x, y, y′) − d

dx
Ly′(x, y, y′)

)
hdx (17)

⇒ δJ [y(x)]

δy(x)
= Ly(x, y, y′) − d

dx
Ly′(x, y, y′) (18)

1.1.5 Third Example

Let the functional defined on a set of multi-variant functions as

J [y] =

∫
L(x, y(x),∇y(x))dx, (19)

Then, one can obtain the functional derivative of it as follows,

δJ(y, h) =
d

dϵ

∫
L(x, y + ϵh,∇(y + ϵh))dx

∣∣∣∣
ϵ→0

=

∫
∂L

∂y
h +

∂L

∂∇y
· ∇hdx

=

∫
∂L

∂y
hdx + ∇ ·

(
∂L

∂∇y
h

)
−∇ · ∂L

∂∇y
hdx product rule of divergence

=

∫ (
∂L

∂y
−∇ · ∂L

∂∇y

)
hdx divergence theorem and h is arbitrary, then, set h = 0 on boundary

⇒ δJ [y(x)]

δy
=

∂L

∂y
−∇ · ∂L

∂∇y
fundamental lemma of calculus of variations
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1.1.6 Integration by parts/Greens’ formulas

product rule of divergence
∇ · (uv) = (∇ · u)v + u · ∇v (20)

∇ · (u∇v) = ∇u · ∇v + u∆v (21)

∇ · (v∇u) = ∇u · ∇v + v∆u (22)

Let (21)-(22), we have
u∆v − v∆u = ∇ · (u∇v) −∇ · (v∇u) (23)

Now, apply divergence theorem on the right hand side of (23), we end up with∫
Ω

u∆v − v∆udx =

∫
∂Ω

un · ∇v − vn · ∇udS (24)

1.1.7 Forth Example

Let the functional defined on a set of multi-variant functions as

J [y] =

∫
L(x, y(x),∇y(x),∆y)dx, (25)

Then, one can obtain the functional derivative of it as follows,

δJ(y, h) =
d

dϵ

∫
L(x, y + ϵh,∇(y + ϵh))dx

∣∣∣∣
ϵ→0

=

∫
∂L

∂y
h +

∂L

∂∇y
· ∇hdx

=

∫
∂L

∂y
hdx + ∇ ·

(
∂L

∂∇y
h

)
−∇ · ∂L

∂∇y
hdx product rule of divergence

=

∫ (
∂L

∂y
−∇ · ∂L

∂∇y

)
hdx divergence theorem and h is arbitrary, then, set h = 0 on boundary

⇒ δJ [y(x)]

δy
=

∂L

∂y
−∇ · ∂L

∂∇y
fundamental lemma of calculus of variations

1.1.8 Fifth Example

Let the functional defined on a set of multi-variant functions as

J [y] =

∫
L(x, y(x),∇y(x),∇∇y(x))dx, (26)

Then, one can obtain the functional derivative of it as follows,

δJ(y, h) =
d

dϵ

∫
L(x, y + ϵh,∇(y + ϵh),∇∇(y + ϵh))dx

∣∣∣∣
ϵ→0

=

∫
∂L

∂y
h +

∂L

∂∇y
· ∇h +

∂L

∂∇∇y
: ∇∇hdx

=

∫
∂L

∂y
hdx + ∇ ·

(
∂L

∂∇y
h

)
−∇ · ∂L

∂∇y
h +

∂L

∂∇∇y
: ∇∇hdx product rule of divergence

=

∫ (
∂L

∂y
−∇ · ∂L

∂∇y

)
hdx divergence theorem and h is arbitrary, then, set h = 0 on boundary

⇒ δJ [y(x)]

δy
=

∂L

∂y
−∇ · ∂L

∂∇y
fundamental lemma of calculus of variations

1.1.9 Chain rule of functional derivative

2 Euler-Lagrange equation

The following theorem provides a necessary condition for a local minimum in variation of calculus which is a
generalization version of Fermat lemma in calculus.
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Theorem 1 Let V be a linear norm space with norm || · || J : A → R be a functional, A ⊆ V . If y0 ∈ A
provides a local minimum for J relative to norm || · ||, then

δJ(y0, h) = 0 (27)

for all admissible variations h.

The fact that eq.(27) often allows us to eliminate h from the condition and obtain an equation just in terms of
y0, which can be solved for y0.

2.1 Example

For the same problem stated in Example (1.1.4), we have

δJ(y, h) =

∫ b

a

(
Ly(x, y, y′) − d

dx
Ly′(x, y, y′)

)
hdx (28)

To find the local minimum of functional J , we could set the first variation to be zero based on the above
theorem. Hence, we have ∫ b

a

(
Ly(x, y, y′) − d

dx
Ly′(x, y, y′)

)
hdx = 0 (29)

Then, if we assume proper admission set for h, based on the fundamental lemma of calculus of variations, we
obtain the so called Euler-Lagrange equation:

Ly(x, y, y′) − d

dx
Ly′(x, y, y′) = 0 (30)

2.2 Dirichlet Boundary Conditions

Let A = {y ∈ C2[a, b]|y(a) = y0, y(b) = y1} denote the admission function class, then try to find a local
minimum for functional

J [y] =

∫ b

a

L(x, y, y′)dx (31)

let y ∈ A, and h ∈ C2[a, b] with h(a) = h(b) = 0, so that y + ϵh ∈ A is an admission function, then by Theorem
(1), we have

δJ(y, h) ≡ d

dϵ
J(y + ϵh)

∣∣∣∣
ϵ→0

= 0

=
d

dϵ

∫ b

a

L(x, y + ϵh, y′ + ϵh′)dx

∣∣∣∣∣
ϵ→0

=

∫ b

a

∂L(x, y + ϵh, y′ + ϵh′)

∂y
h +

∂L(x, y + ϵh, y′ + ϵh′)

∂y′
h′dx

∣∣∣∣∣
ϵ→0

=

∫ b

a

∂L(x, y, y′)

∂y
h +

∂L(x, y, y′)

∂y′
h′dx

=

∫ b

a

 Lyhdx−
∫ b

a

h
d

dx
Ly′dx + Ly′h|ba integration by parts

=

∫ b

a

(
Ly(x, y, y′) − d

dx
Ly′(x, y, y′)

)
hdx = 0 zero B.C on h

⇒ Ly(x, y, y′) − d

dx
Ly′(x, y, y′) = 0 fundamental lemma of calculus of variations

Hence, if a function y provides a local minimum for th functional J on A and the Dirichlet boundary condition
is built into the admission function class A,

J [y] =

∫ b

a

L(x, y, y′)dx (32)

then, y must satisfy the differential equation

Ly(x, y, y′) − d

dx
Ly′(x, y, y′) = 0. (33)
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This equation is called the Euler equation or Euler-Lagrange equation. It is a second order ODE since

Ly(x, y, y′) − d

dx
Ly′(x, y, y′) = 0

= Ly(x, y, y′) − Ly′x(x, y, y′) − Ly′y(x, y, y′)y′ − Ly′y′(x, y, y)y′′ = 0.

Hence, from the above variational problem, we end up with the ODE with Dirichlet boundary conditions which
is built into the admission function class.

2.3 Neumann Boundary Conditions

Let A = C2[a, b] denote the admission function class with boundary free, then try to find a local minimum for
functional

J [y] =

∫ b

a

L(x, y, y′)dx (34)

let y ∈ A, and h ∈ C2[a, b], so that y + ϵh ∈ A is an admission function, then by Theorem (1), we have

δJ(y, h) ≡ d

dϵ
J(y + ϵh)

∣∣∣∣
ϵ→0

= 0

=
d

dϵ

∫ b

a

L(x, y + ϵh, y′ + ϵh′)dx

∣∣∣∣∣
ϵ→0

=

∫ b

a

∂L(x, y + ϵh, y′ + ϵh′)

∂y
h +

∂L(x, y + ϵh, y′ + ϵh′)

∂y′
h′dx

∣∣∣∣∣
ϵ→0

=

∫ b

a

∂L(x, y, y′)

∂y
h +

∂L(x, y, y′)

∂y′
h′dx

=

∫ b

a

 Lyhdx−
∫ b

a

h
d

dx
Ly′dx + Ly′h|ba integration by parts

By theorem (1), we know ∫ b

a

 Lyhdx−
∫ b

a

h
d

dx
Ly′dx + Ly′h|ba = 0

for all h ∈ C2[a, b], then, it must hold for h with h(a) = h(b) = 0, then,

⇒
∫ b

a

(
Ly(x, y, y′) − d

dx
Ly′(x, y, y′)

)
hdx = 0 zero B.C on h

⇒ Ly(x, y, y′) − d

dx
Ly′(x, y, y′) = 0 fundamental lemma of calculus of variations

Hence, y must satisfy the Euler-Lagrange equation.
Now, consider the boundary conditions.
We substitute the Euler-Lagrange equation into the above expression of δJ(y, h), we get

Ly′(b, y(b), y′(b))h(b) − Ly′(a, y(a), y′(a))h(a) = 0 (35)

for all h ∈ C2[a, b], then, it must hold for h with h(a) = 0, then,

⇒ Ly′(b, y(b), y′(b))h(b) = 0 (36)

hold for all h(b), then
⇒ Ly′(b, y(b), y′(b)) = 0 (37)

Similarly, we have the equation holds for h with h(b) = 0,

Ly′(b, y(b), y′(b))h(b) − Ly′(a, y(a), y′(a))h(a) = 0 (38)

then,
⇒ Ly′(a, y(a), y′(a))h(a) = 0 (39)

holds for any h(a), hence, we get
⇒ Ly′(a, y(a), y′(a)) = 0 (40)

Hence, we end up with ODE with neumann boundary conditions.
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2.4 Robin Boundary Conditions

Let A = C2[a, b] denote the admission function class, then try to find the stationary point of functional

J [y] =

∫ b

a

L(x, y, y′)dx (41)

3 What is free energy?

This section will be updated soon.

4 Gradient flow

check ref.bib for two references.
A general gradient flow model is given by

∂Φ

∂t
= G δE

δΦ
, x ∈ Ω, (42)

where Φ = (ϕ1, ..., ϕd)T is the state variable vector, G is the d×d mobility matrix operator which can depend on
Φ, E is the free energy functional, and δE

δΦ is the variational derivative of the free energy functional with respect
to the state variable, known as the chemical potential. The triple (Φ,G, E) uniquely defines the gradient flow
model. For model ((42)) to be thermodynamically consistent, the time rate of change of the free energy must
be non-increasing:

dE

dt
= (

δE

δΦ
,
∂Φ

∂t
) = (

δE

δΦ
,G δE

δΦ
) ≤ 0, (43)

where the inner product is defined by (f ,g) =
∑d

i=1

∫
Ω
figidx, ∀f ,g ∈ (L2(Ω))d, which requires G to be

negative semi-definite. The L2 norm is defined as ||f ||2 =
√

(f , f). Note that the energy dissipation law ((43))
holds only for suitable boundary conditions. Such boundary conditions include periodic boundary conditions
and the other boundary conditions that make the boundary integrals resulted from the integration by parts
vanish in the calculation of variational derivatives.

Justify the first eq sign in eq.(43) for 1D case with functional defined by up to second order spatial
derivatives.

Example 1. Let J [u] =
∫ b

a
f(x, u(t, x), u′(t, x))dx, x ∈ R, t ∈ R+, then, to compute the time derivative of

J , we have

d

dt
J [u] =

d

dt

∫ b

a

f(x, u(t, x), u′(t, x))dx

=

∫ b

a

fuut + fu′u′
tdx chain rule

=

∫ b

a

fuut −
d

dx
fu′utdx + fu′ut|x=b

x=a Integration by parts for the last term

=

∫ b

a

(
fu − d

dx
fu′

)
utdx proper boundary conditions to eliminate boundary terms on u

=

(
δJ

δu
, ut

)
by definition of first variation
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Example 2. Let J [u] =
∫ b

a
f(x, u(t, x), u′(t, x), u′′(t, x))dx, then, to compute the time derivative of J , we have

d

dt
J [u] =

d

dt

∫ b

a

f(x, u(t, x), u′(t, x), u′′(t, x))dx

=

∫ b

a

fuut + fu′u′
t + fu′′u′′

t dx interchange integral and derivative & chain rule

=

∫ b

a

fuut −
d

dx
fu′utdx + fu′ut|x=b

x=a −
∫ b

a

d

dx
fu′′u′

tdx + fu′′u′
t|x=b
x=a integration by parts twice!

=

∫ b

a

fuut −
d

dx
fu′utdx + fu′ut|x=b

x=a + fu′′ut|x=b
x=a +

∫ b

a

d2

d2x
fu′′utdx− d

dx
fu′′ut|x=b

x=a

=

∫ b

a

(
fu − d

dx
fu′ +

d2

d2x
fu′′

)
utdx proper boundary conditions on u to eliminate boundary terms

=

(
δJ

δu
, ut

)
Now, let’s show two more example in high dimensional space with up to second spatial derivatives.

Example 3. Let J [u] =
∫ b

a
f(x, u(t,x),∇u(t,x))dx, where x ∈ Ω ⊂ Rn then, to compute the time derivative

of J , we use Einstein summation notation in the following derivation/computation.

d

dt
J [u] =

d

dt

∫
Ω

f(x, u(t,x),∇u(t,x))dx

=

∫
Ω

∂f

∂u
ut +

∂f

∂∇iu
∇iutdx chain rule

=

∫
Ω

∂f

∂u
ut + ∇i

(
∂f

∂∇iu
ut

)
−∇i

∂f

∂∇iu
utdx product rule of divergence/derivative for the last term

=

∫
Ω

(
∂f

∂u
−∇i

∂f

∂∇iu

)
utdx +

∫
∂Ω

ni
∂f

∂∇iu
utdS divergence theorem

=

∫
Ω

(
∂f

∂u
−∇ · ∂f

∂∇u

)
utdx +

∫
∂Ω

n · ∂f

∂∇u
utdS

=

(
δJ

δu
, ut

)
proper B.C. to eliminate boundary terms and by definition of first variation

Note that there are some conditions need to be satisfied by u in the second equal sign when one interchange
the order between spatial derivative and time derivative.
Remark: we use Einstein summation notation in the above derivation and it is suggested to write calculations
in component and caring assigned indices. (tensor product etc. read the textbook shared by Jun Li)

Example 4. Let J [u] =
∫ b

a
f(x, u(t,x),∇u,∇∇u)dx, where x ∈ Ω ⊂ Rn then, to compute the time

derivative of J , we use Einstein summation notation in the following derivation/computation.

d

dt
J [u] =

d

dt

∫
Ω

f(x, u,∇u,∇∇u)dx

=

∫
Ω

∂f

∂u
ut +

∂f

∂∇iu
∇iut +

∂f

∂∇i∇ju
: ∇i∇jutdx chain rule

=

∫
Ω

∂f

∂u
ut −∇i

∂f

∂∇iu
utdx +

∫
∂Ω

ni

(
∂f

∂∇iu
ut

)
dS +

∫
Ω

∇i

(
∂f

∂∇i∇ju
∇jut

)
−∇i

∂f

∂∇i∇ju
∇jutdx

=

∫
Ω

(
∂f

∂u
−∇ · ∂f

∂∇u

)
utdx−

∫
Ω

∇i
∂f

∂∇i∇ju
∇jutdx +

∫
∂Ω

ni
∂f

∂∇i∇ju
∇jutdS +

∫
∂Ω

n · ∂f

∂∇u
utdS divergence theorem

= I1 −
∫
∂Ω

nj∇i
∂f

∂∇i∇ju
utdS +

∫
Ω

∇j∇i
∂f

∂∇i∇ju
utdx +

∫
∂Ω

ni
∂f

∂∇i∇ju
∇jutdS divergence theorem

= I1 +

∫
Ω

∇∇ :
∂f

∂∇∇u
utdx−

∫
∂Ω

n∇ :
∂f

∂∇∇u
utdS +

∫
∂Ω

ni
∂f

∂∇i∇ju
∇jutdS

Note that we define I1 by the blue terms above it. Now, the issue is how to handle the surface integral with
a conventional gradient in it? How do we convert it into someway that we could apply surface divergence
theorem?
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5 Derivation of Allen Cahn equation

check ref.bib for two references.

6 Derivation of Cahn Hilliard equation

check ref.bib for two references.
Let us consider the following free energy density functional:

E[u] =
ϵ2

2
(∇u,∇u) + (F (u), 1) =

∫
Ω

(
ϵ2

2
|∇u(x, t)|2 + F (u(x, t))

)
dx, (44)

where

• u = u(t, x) is the time-dependent quantity of interests;

• x ∈ Ω ∈ Rd is open, connected and bounded region with Lipschitz boundary;

• (·, ·) denotes the L2 inner product on Ω;

• ϵ > 0 represents the interface width of the two phases and F (u) is the associated nonlinear potential
function.

The classic Allen-Cahn eq could be viewed as the gradient flow in L2 of eq ((44)):

∂tu(x, t) =
δE

δu
= ϵ2∆u(x, t) + f(u(x, t)), x ∈ Ω, t > 0 (45)

The classic Cahn-Hilliard eq as the gradient flow in H−1 of eq ((44)):

∂tu(x, t) = −∆(−δE

δu
) = −∆(ϵ2∆u(x, t) + f(u(x, t))), x ∈ Ω, t > 0 (46)

where f(u) = −F ′(u).
The energy dissipation law holds for the Allen-Cahn eq ((45)) as

d

dt
E[u(x, t)] = −

∫
Ω

|∂tu(x, t)|2dx ≤ 0 (47)

while for the Cahn-Hilliard eq ((46)) it reads

d

dt
E[u(x, t)] = −

∫
Ω

|∇δE

δu
|2dx ≤ 0 (48)

Allen-Cahn equation:

• satisfies the maximum bound principle(MBP) in the sense that if the initial values are pointwisely bounded
by a specific constant in absolute value, then the absolute value of the solution is bounded by the same
constant everwhere for all time.

• but fails to conserve the total mass V (t) :=
∫
Ω
u(x, t)dt along the time.

Cahn-Hilliard equation:

• conserve the total mass along the time

• but fails to satisfies the maximum bound principle as AC eq stated above. It may has bound, but not
necessarily be bounded by the same constant.

Some typical potential functions

• Double-well potential:

F (u) =
1

4
(u2 − 1)2, f(u) = u− u3 (49)

• Flory-Huggins potential:

F (u) =
θ

2
[(1 + u)ln(1 + u) + (1 − u)ln(1 − u)] − θc

2
u2, f(u)

θ

2
ln

1 − u

1 + u
+ θcu (50)

with 0 < θ < θc, and the bounding constant is the positive root of f(ρ) = 0.
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