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2 Motivation
Motivation PCA is a dimensional reduction method/feature extraction method.

Motivation In case (a), all points lies on a straight line which is a subspace of R2,
then PCA could help us to determine this straight line, then we could represent all these
data in 1D by using this line as new coordinate system.
In case (b), the points are not exactly lie on the line, but we still could find such a line
and use the projection of the points on this line to represent them! Though, we lose
some info, but we didn’t lose too much as long as the line is well chosen.
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Figure 1: fig1

1

In (b), u1 is the first principle component, and u2 is the second one.

• One way to understand PCA is that we are rotating the coordinate system so that
we could represent the data in a lower-dimensional subspace without losing too
much info.

• Another way to understand PCA is that looking for vector u1 among all possible
vector in this space such that when all points are projected on u1, the variation of
the data set is maximum.

• the goal is to preserve as much of the variance in the original data as possible in
the new coordinate system.

• Given data of d variables, the hope is that the data points will lie mainly in a
linear subspace of dimension lower that d.

3 Definition and Optimization problem
Definition For a given set of data vectors xi, i “ 1,2, ...,n. the p principal axes are those
orthonormal axes onto which the variance retained under projection is maximal.
let X “ rx1,x2, ...,xns where xi P Rd , i “ 1,2, ...,n. Then, we could formulate the PCA
as the following optimization problem.

maxu1PRdVarpuT
1 Xq “ maxu1PRd uT

1 Su1 (1)

Where S is the d ˆd sample covariance matrix of original data X . This is not a well
defined problem, since the objective is a quadratic form which has no upper bound.
Hence, we need a constrain.

Optimization Problem

• Where the constrain comes from?
Since we are searching for the direction of PC, but not the length, then, we could
add a constrain ||u1||22 “ uT

1 u1 “ 1.

1Ghodsi, Principal Component Analysis, Lec1 & Lec2
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• Now we get a well-defined optimization problem:

maxu1uT
1 Su1 (2)

s.t.uT
1 u1 “ 1 (3)

Lagrange Multiplier Method Apply Lagrange Multiplier method, we get:

Lpu1,λ1q “ uT
1 Su1 ´ λ1puT

1 u1 ´ 1q (4)

where λ1 is lagrange multiplier or dual variable.
By differentiate this Lagrangian function, we get

BL
Bu1

“ 2Su1 ´ 2λ1u1 “ 0. (5)

BL
Bλ 1

“ uT
1 u1 ´ 1 “ 0 (6)

4 Structure of PCs
Structure of PC From (5), we know, Su1 “ λ1u1, hence, λ1 and u1 is eigenpair of S.
Then, we could determine the PC by simplifying the objective function using this prop-
erty.

uT
1 Su1 “ λ1uT

1 u1 “ λ1 (7)

covariance matrix S has at most d eigenpairs,

λ1 ą λ2 ą ... ą λd

u1 ą u2 ą ... ą ud

Conclusion: The eigenvector of sample covariance matrix S corresponding to the max-
imum eigenvalue is the first principal component! Similar results for other PCs.

Centralization and SVD Centralize X , let X :“ X ´ onespd,1qM where M is a row
vector with size 1 by n, with mean of each row of X as entry. By the definition of
covariance matrix, we know S “ ErpX ´ µqpX ´ µqT s “ EpXXT q. Then, do SVD for
the centralized data, we get

Xdˆn “ UΣV T (8)

where Udˆd is the eigenvector matrix of XXT which is S, Vnˆn is the eigenvector
matrix of XT X , Σ is diagonal matrix with eigenvalues of XT X as components. (de-
scending order)
Hence, U is the collection of all principal components.

5 Encoder and Decoder
encoder and decoder/reconstruction let Xdˆn “ rx1, ...,xns

We could project the first sample x1 P Rd into a point y1 P R in u1 P Rd axes by the
following projection.

y1 “ uT
1 x1 (9)
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One can also project it back by
x̂1 “ u1y (10)

Figure 2: fig2

encoder and decoder ui
T X is the projection of the data on the direction of the i ´ th

PC. Let Udˆp “ ru1, ...,ups, where p ď d, we could treat PCA as a linear autoencoder:

Xdˆn
encoder
´́ ´́ Ñ

UT
dˆp

Ypˆn
decoder
´́ ´́ Ñ

Udˆp
X̂dˆn (11)

or for single sample x:

xdˆ1
encoder
´́ ´́ Ñ

UT
dˆp

ypˆ1
decoder
´́ ´́ Ñ

Udˆp
x̂dˆ1 (12)

Remark:
The variance of the original data is the same as the projected data on all PCs. This
conclusion comes from the fact:

d
ÿ

i“1

VarpuT
i Xq “

d
ÿ

i“1

λi “ TrpSq “ VarpXq (13)

Algorithm 1

• Centralized original data X to get new X.

• Calculate XXT and let U “ eigenvectors of XXT corresponding to the top p
eigenvalues.

• Encode the training data: Y “ UT X where Y P Rpˆn is a matrix of encodings of
the original data.

• Reconstruct training data: X̂ “ UY “ UUT X .

• Encode the test sample: y “ UT x where y is a pdimensional encoding of x.

• Reconstruct test sample: x̂ “ Uy “ UUT x.
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6 Dual PCA
Dual PCA We learned the PCA for the case d ă n, now, we learn Dual PCA for d ą n.
Motivation:In reality, there is a situation that d ą n, for example genes and patients.
Then XXT is d ˆ d a larger matrix, which is computational cost to do SVD, but, XT X
is n ˆ n a smaller matrix, hence, in Dual PCA, we would like to decompose XT X and
represent U in terms of X and the SVD results(Σ,V ) of XT X .
Let X “ UΣV T , then XV “ UΣ, then

U “ XV Σ
´1 (14)

where Σ,V comes from the svd of XT X .
Dual PCA Algorithm 2

• Centralized original data X to get new X.

• Calculate XT X and do SVD for it to get Σ and V .

• Encode the training data: Y “ UT X “ ΣV T where V is the matrix of eigenvec-
tors of XT X corresponding to the top p eigenvalues. Y P Rpˆn is a matrix of
encodings of the original data.

• Reconstruct training data: X̂ “ UY “ XV Σ´1Y “ XV Σ´1ΣV T “ XVV T .

• Encode the test sample: y “ UT x “ Σ´1V T XT x where y is a pdimensional en-
coding of x.

• Reconstruct test sample: x̂ “ Uy “ UUT x “ XV Σ´1Σ´1V T XT x “ XV Σ´2V T x.

7 Kernel PCA
Kernel PCA

• What is kernel?
Any positive definite function could be a kernel function.

• Why it helps?/Why we need it?
Usually, higher dimensional data is easier to explore. Changing the nonlinear
data into a linear case(quasi-linear case) by kernel. And this is usually done by
going to higher dimensional space.

xT y is a measurement of the similarity between x and y in Euclidean metric, then
φpxqT φpyq is another measurement of similarity between φpxq and φpyq which is based
on other metric.

what is kernel? let x “ rx1,x2s1, φpxq “ rx2
1,x

2
2,

?
2x1x2s1, y “ ry1,y2s1,φpyq “ ry2

1,y
2
2,

?
y1y2s1.

Then, φpxqT ¨φpyq “ x2
1y2

1 `x2
2y2

2 `2x1x2y1y2 “ px1y1 `x2y2q2, One could verify easily
that there is a function kpx,yq such that kpx,yq “ φpxqT φpyq.
kpx,yq “ px1y1 ` x2y2q2

Examples of kernel functions:
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• linear kernel: kpx,yq “ ⟨x,y⟩

• polynomial kernel: kpx,yq “ p1 ` ⟨x,y⟩qp

• Gaussian kernel: kpx,yq “ e
´

||x ´ y||2

2σ2

Kernel PCA Algorithm 3

• Centralized original data X to get new X.

• Calculate φpXqT φpXq and do SVD for it to get Σ and V .

• Encode the training data: Y “ UT φpXq “ ΣV T where V is the matrix of eigen-
vectors of XT X corresponding to the top p eigenvalues. Y P Rpˆn is a matrix of
encodings of the original data.

• Reconstruct training data: We can’t!
since X̂ “ UY “ XV Σ´1Y “ XV Σ´1ΣV T “ φpXqVV T where φpXq is unknown.

• Encode the test sample: y “UT φpxq “ Σ´1V T φpXqT φpxq where y is a pdimensional
encoding of x.

• Reconstruct test sample: We can’t!
x̂ “ Uy “ UUT φpxq “ φpXqV Σ´1Σ´1V T φpXqT φpxq “ φpXqV Σ´2V T φpxq. We
don’t know φpXq.

Scree plot and biplot The residual error from only using first p PCs is given by the
sum of discarded eigenvalues:

Error “

d
ÿ

j“p`1

λ j (15)

Hence, one can plot the retained eigenvalues in decreasing order,known as scree plot,
to find the relationship between the reconstruction error and number of PCs.

To better understand the meaning of the principle components, we can project unit
vectors corresponding to each of the feature dimensions, e1 “ p1, ...,0q P Rd ,e2 “

p0,1, ...,0q, etc. into the low dimensional space. Usually, project the unit vector of
features to the first 2 PCs. This is known as a biplot. Note: One can check that the
projection of e1 “ ru11,u21, ...,up1s.

8 Categorical PCA
categorical PCA
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9 Proper Orthogonal Decomposition (POD)
Proper Orthogonal Decomposition (POD) POD is a method of reduced order model-
ing.

utpt,xq “ L upt,xq `N upt,xq (16)

For such a PDE, after spatial discretization (for example, finite difference discretization
to represent an element u in infinite dimensional by a finite dimensional vector u), we
obtain a collection of ODE (a large ODE system)

upt,xq Ñ upt,x jq “ u jptq, j “ 1, ...,n pspatial discretizationq (17)

duptq
dt

“ Luptq ` Nuptq (18)

Where u “ ru1ptq, ...,unptqs, L and N are the discrete version of L and N respectively,
and n could be very large if the mesh size of spatial domain is quite small or the dimen-
sion of the spatial domain is large (For example, 1D case with 100 grids, then, u P R102

,
2D case with 100 grids, then, u P R104

, and 3D case with 100 grids, then, u P R106
).

Solving this kind of large dynamical system will be very time consuming or even out
of our computational capacity or memory capacity. Hence, we need to develop the
reduced order model to approximate this kind of dynamic system accurately and could
be computed very efficiently. POD is such a method to embed the high dimensional
dynamic into a lower dimensional space by using a proper basis.

Now, for solving eq.18, we first do temporal discretization with mesh ∆t, then
RK method or other numerical scheme for ODE could be applied to obtain snapshot
ui “ rui1, ...,uinsT at time ti. Let X “ ru1,u2, ...,ums be the centered snapshots matrix
(minus the mean of each column/take average over space) of dynamics at m different
time.

POD basis To find a lower dimensional representation of u, one can apply PCA.
By using the idea of POD (PCA), one can find the left singular matrix Φn of X through
SVD or find the eigenmatrix Φn of covariance matrix XXT to get the proper orthogonal
basis Φr (first r columns of Φn) to represent u in a lower dimension. Note that when
X is low-and-fat pn ! mq, the POD basis can be found by using the SVD algorithm.
Conversely, if x is tall-and-skinny pn " mq, the method of snapshots can be applied.
When parallel computing is implemented in large-scale computing problems, one can
use an approximate partitioned method of snapshots to further reduce the computa-
tional complexity and the communication volume for generating the POD basis in (Z.
Wang, McBee, and Iliescu, “Approximate partitioned method of snapshots for POD”).

Galerkin Projection

uptq «

r
ÿ

i“1

φiaiptq “ Φraptq (19)

Φ
T
r Φr “ Irˆr (20)

where u P Rn, Φr “ rφ1, ...,φrs P Rnˆr is the collection of r POD basis (axis) and
aptq “ ra1ptq, ...,arptqs P Rr is the corresponding coordinate coefficients. eq.20 shows
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the Orthogonality of the linear transform Φr P Rnˆr which could be a long matrix (so
usually, it not an orthogonal matrix which is a square matrix).

Low-Rank Dynamics In matrix form, we could plug eq.19 into eq.18, and multiply
ΦT

r , we get the Galerkin projected Low-Rank Dynamics

daptq
dt

“ Φ
T
r LΦraptq ` Φ

T
r NpΦraptqq (21)

where Φr is determined by POD and the above Low-Rank dynamics is obtained
through projecting the original dynamics into lower dimensional space spanned by Φr
using Galerkin projection.

As we can see, by applying POD and Galerkin projection, the original high di-
mensional dynamics system 18 of u with dimension n becomes a lower dimensional
dynamics system of a in new coordinate system with dimension r ! n.

Let X “ ru1,u2, ...,ums be the centered snapshots of m time. For computational
efficiency, there are two ways to compute POD basis:

1. standard POD: n ! m compute eigen-decomposition of XXT

2. snapshot POD: n " m compute eigen-decomposition of XT X 1

Note: One need to check the relation between Snapshot POD and dual PCA.

10 Applications
Applications Deal with images with noise. Question: What is the feature in this prob-
lem? One could treat PCA as a approximation of matrix by rank one matrix! And each
rank one matrix represents a feature!
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