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Abstract. In this report, we focus on 1D reaction-diffusion equations with periodic domain for several different
types of reaction terms including: −u2, u2, u(1− u), u(1− u)(α− u). We show the existence, uniqueness and

instant regularization of weak solution (u, u′) in space L2([0, T ];H1(T)), L2([0, T ];H−1(T)) respectively. We

first construct solutions um of certain finite-dimensional approximations to our original problems by using the
Galerkin Approximation Method. Then we do L2 energy estimates to get uniform boundedness of um and

umt, followed by applying Banach Alaoglu Theorem and Aubin-Lions Lemma to show a subsequence of um
converging to a weak solution of the original problem. We also show the existence and uniqueness of mild
solution in Banach space ET via Banach Fixed point Theorem for the cases −u2, u2, u(1− u).

1. Introduction

Reaction–diffusion equations are mathematical equations which correspond to several physical phenomena.
The most common is the change in space and time of the concentration of one or more chemical substances:
local chemical reactions in which the substances are transformed into each other, and diffusion which causes
the substances to spread out over a surface in space.

Reaction–diffusion equations are naturally applied in chemistry. However, the system can also describe
dynamical processes of non-chemical nature. Examples are found in biology, geology, physics (neutron diffusion
theory), and ecology. Mathematically, reaction–diffusion equations take the form of semi-linear parabolic partial
differential equations. They can be represented in the general form

ut − νuxx = R(u)

Where u = u(x, t) represents the unknown vector function, ν is a diffusion coefficient, and R(u) is a smooth
function R : R→ R which accounts for all local reactions[1].

2. Background

2.1. The FKPP equation.

Investigation in this field began from the papers [2] of Fisher and Kolmogorov, Petrovsky and Piskunoff and
was motivated by population dynamics issues, where authors arrived at a modified diffusion equation:

ut − νuxx = u− u2.

A typical solution of this equation is a propagating front separating two non-equilibrium homogeneous states,
one of which (u = 1) is stable and another one (u = 0) is unstable. The interest in physics in these type of fronts
was stimulated in the early 1980’s by the work of G. Dee and coworkers on the theory of dendritic solidification.
Examples of such fronts can be found in various physical, chemical, and biological systems.

2.2. The Zeldovich equation.

Another important example of Reaction-Diffusion equations is the Zeldovich–Frank– Kamenetsky–Equation[3],
which describes flame propagation.

ut − νuxx = u(1− u)(α− u), α ∈ (0, 1).

This model has been suggested in 1937 for the mathematical description of combustion processes. ZFK model
relates to the class of nonlinear reaction diffusion models. Actually, it was one of the first models of the class
mentioned, which gave non-trivial results of great importance: in particular, this model enabled the derivation
of the general analytical expression for the velocity of stationary propagating plane flame front.
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3. Reaction term R(u) = −u2

In this chapter, consider the following reaction-diffusion equation:

(1)

{
ut − νuxx = −u2 in [0, T ]× T
u(t = 0, x) = g(x)

where T denotes periodic boundary, ν is a positive constant.

3.1. Weak Formulation and Weak Solution.

Definition 3.1. By using test functions and divergence theorem/integration by parts, we get the weak formu-
lation of (1) as follows:
Find weak solution u ∈ L2([0, T ];H1(T)) such that

〈ut, v〉+ ν((u, v)) = −
〈
u2, v

〉
(2)

for all test functions v(t, x) ∈ H1(T) where 〈·, ·〉 denotes L2 inner product, i.e. 〈ut, v〉 :=
∫
T utvdx, ((·, ·))

denotes H1 inner product, i.e. ((u, v)) :=
∫
T uxvxdx and

〈
u2, v

〉
:=
∫
T u

2vdx

Note: ut denotes the weak time derivative of u with respect to the initial condition with ut satisfying∫
T

∫ T

0

utvdtdx = −v(t = 0, x)u(t = 0, x)−
∫
T
uvtdtdx

3.2. Galerkin Approximation Method.

We first use Galerkin approximation method to get an approximated solution of (1) in finite dimensional space.
Choose finite dimensional subspace Vm = span{v1, v2, ..., vm} ⊆ H1(T) to find the approximation solution
um(t, ·) ∈ Vm such that

(3) (umt, v) + ν((um, v)) = −P[(u2m, v)]

for all test functions v ∈ Vm. Where P is the projection mapping such that P : P[
∑∞
i=1 aivi] =

∑m
i=1 aivi.

Let’s assume um =
∑m
j=0 cj(t)vj(x). Then, one can get

m∑
j=1

c′j(t)(vj , vi) + ν

m∑
j=1

cj(t)((vj , vi)) = −P[((

m∑
j=1

ctvj)
2, vi)](4)

for all i = 1, 2, ...,m.
Let’s assume that basis functions vi have L2-norm and H1-norm orthogonality. We can orthonormalize basis
in L2-norm and simplify (4), so that an ODE system is obtained:

(5)

{
I · C ′(t) + νB · C(t) + P[F (t, C(t))] = 0

C(0) = g

Where C(t) = (c1(t), ..., cm(t))′, matrix B = (bij)m×m with bij = ((vj , vi)), If P[FC(t, C)] is bounded, one
can get existence and uniqueness of solution um ∈ Vm from the theory of ODE.
We propose now to send m to infinity and show a subsequence of our solutions um which converges to a weak
solution of (1) by doing some uniform estimate. In order to simplify the notation,we denote um by u in the
following sections.

3.3. Existence.

Theorem 3.2. Weak compactness-special case of Banach-Alaoglu Theorem
Let X be a reflexive Banach space and suppose the sequence {uk}∞k=1 ⊂ X is bounded. Then there exists a
subsequence {ukj}∞j=1 ⊂ {uk}∞k=1 and u ∈ X such that

ukj ⇀ u

One can use Banach-Alaoglu Theorem to get a candidate solution of (1).
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3.3.1. Uniform boundedness of max0≤t≤T ||u||2L2 .

Choose v = um ∈ Vm as test function in (3),∫
uutdx+ ν

∫
u2xdx = −

∫
u3dx ≤ 0

⇒ d

dt

∫
1

2
u2dx+ ν

∫
u2xdx ≤ 0

Define E(t) =
∫
u2dx

E′(t) + 2ν

∫
u2xdx ≤ 0

⇒ E′(t) ≤ 0

⇒ E(t) ≤ E(0) = ||g||2L2 ∀t ∈ [0, T ]

Hence, ∫
u2dx ≤ ||g||2L2

⇒ max
0≤t≤T

||u||2L2 ≤ ||g||2L2 .

3.3.2. Uniform boundedness of um in L2H1 norm.

E′(t) + 2ν

∫
u2xdx+ 2ν

∫
u2dx ≤ 0 + 2ν

∫
u2dx

⇒ E′(t) + 2ν||u2||H1 ≤ 2νE(t)

E′(t) ≤ −2ν||u||2H1 + 2νE(t)

By Grönwall inequality:

E(t) ≤ e
∫ t
0
2νds

(
||g||2L2 +

∫ t

0

−2ν||u(s, ·)||2H1ds

)
⇒ e2νt2ν

∫ t

0

||u(s, ·)||2H1ds ≤ e
∫ t
0
2νds||g||2L2 − E(t) ≤ e2νt||g||2L2

||u(t, x)||L2H1 ≤
||g||2L2

2ν
Since um is uniformly bounded in L2H1, by Banach-Alaoglu theorem, um converges weakly to a limit point

u in L2H1 up to a subsequence.

3.3.3. Uniform boundedness of umt in L1H−1.

By the decomposition of Hilbert space H1(T) which is H1(T) = Vm + V ⊥m , one has ∀v ∈ H1(T), v = v1 + v2
where v1 ∈ Vm, v2 ∈ V ⊥m .
By the orthogonality, we have

〈ut, v〉 = 〈ut, v1 + v2〉 = 〈ut, v1〉+ 〈ut, v2〉 = 〈ut, v1〉
From the weak formulation (3) we get:

〈ut, v1〉 = −ν((u, v1))− (u2, v1)

Hence,
〈ut, v〉 = −ν((u, v1))− (u2, v1) ∀v ∈ H1(T).

Then,

| 〈ut, v〉 | ≤ ν|((u, v1))|+ |(u2, v1)|
≤ ν||u||H1 ||v1||H1 + ||u2||L2 ||v1||L2

≤ ν||u||H1 ||v||H1 + ||u2||L2 ||v||H1

⇒ | 〈ut, v〉 |
||v||H1

≤ ν||u||H1 + ||u2||L2

By the definition ||ut||H−1 = supv∈H1(T)
| 〈ut, v〉 |
||v||H1

, we have

||ut(t, ·)||H−1 ≤ ν||u(t, ·)||H1 + ||u(t, ·)||2L4



4 COVINGTON, CHEBOTAEVA, LI, MEDVED, AND MACNAMARA

Take L1 integral over [0, T ]∫ T

0

||ut(s, ·)||H−1ds ≤ ν
∫ T

0

||u(s, ·)||H1ds+

∫ T

0

||u(s, ·)||2L4ds

⇒ ||ut||L1H−1 ≤ ν||u||L1H1 + ||u||L2L4

By Sobolev embedding H1 ↪→ L4, we get

||u||L4 ≤ C||u||H1

⇒ ||u||L2L4 ≤ C||u||L2H1

By Hölder inequality, we get

||u||L1H1 ≤
√
T ||u||L2H1

Hence, we get

||ut||L1H−1 ≤ ν
√
T ||u||L2H1 + C||u||L2H1

≤ (ν
√
T + C)||u||L2H1

≤ C̃||g||2L2

Since umt is uniformly bounded in L1H−1, by Banach-Alaoglu theorem, umt converges weakly to a limit
point u′ in MH−1 up to a subsequence. One can extend this result to L2H−1.

3.3.4. Extended Uniform boundedness umt in L2([0, T ];H−1(T)).

Let’s focus on the estimate of ||ut(t, ·)||H−1 that we get in previous subsection.

||ut(t, ·)||H−1 ≤ ν||u(t, ·)||H1 + ||u(t, ·)||2L4

Take L2 integral over [0, T ]∫ T

0

||ut(s, ·)||2H−1ds ≤ ν2
∫ T

0

||u(s, ·)||2H1ds+

∫ T

0

||u(s, ·)||4L4ds+

∫ T

0

2ν||u||H1 ||u||2L4ds

⇒ ||ut||L2H−1 ≤
(
ν2 + 2Mν

)
||u||L2H1 +M2||u||L2L2

Where the last inequality is valid due to ||u||4L4 =
∫
u4dx ≤M2

∫
u2dx = M2||u||2L2 and ||u||2L4 =

(∫
u4dx

)1/2 ≤
M
(∫
u2dx

)1/2
= M ||u||L2 ≤ M ||u||H1 by 0 ≤ u ≤ M which will be proved in the later section.Hence,

||umt||L2H−1 is uniformly bounded by the uniform boundedness of ||u||L2H1 and max0≤t≤T ||u||2L2 .

3.3.5. Passing the limit to the non-linear term.

Theorem 3.3. Aubin-Lions Lemma Let X0, X,X1 be three Banach spaces with X0 ⊆ X ⊆ X1. Suppose
that X0 is compactly embedded in X and that X is continuously embedded in X1. For 1 ≤ p, q ≤ ∞, let

W = {u ∈ Lp([0, T ];X0)|u′ ∈ Lq([0, T ];X1)}

• If p <∞, then the embedding of W into Lp([0, T ];X) is compact.
• If p =∞ and q > 1, then the embedding of W into C([0, T ];X) is compact.

BecauseH1 ↪→ L2 ↪→ H−1 withH1 ↪→ L2 being a compact embedding and L2 ↪→ H−1 being a continuous em-
bedding, Aubin-Lions Lemma tells us that umj → u in L2([0, T ], L2(T)). Then we have limj→∞

∫
u2mj =

∫
u2dx.

Then limj→∞
∫
T u

2
mjvdx =

∫
T u

2vdx for any function v ∈ Vm.
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3.3.6. Conclusion. Summarize the results above, we have(
umjt, v

)
→ (ut, v)((

umj , v
))
→ ((u, v))(

u2mj , v
)
→

(
u2, v

)
for v ∈ Vm.
By property of Hilbert space, we know that Vm → H1(T) as m→∞.
Thus,

lim
j→∞

((
umjt, v

)
+ ν

((
umj , v

)))
= lim

j→∞

(
−u2mj , v

)
for v ∈ Vm

〈ut, v〉+ ν((u, v)) = −
〈
u2, v

〉
for v ∈ H1

One can easily check that u′, the limit point of umjt , satisfies the initial condition. Thus, u is a weak solution

in L2([0, T ];H1(T)). Up to now we get the existence of a weak solution, and in the following sections we will
focus on the uniqueness of our weak solution.

3.4. Uniqueness.

Let u1, u2 ∈ L2([0, T ];H1(R)) be two weak solutions of

(6)

{
ut − νuxx = −u2

u(t = 0, x) = g(x)

Then w = u1 − u2 satisfies

(7)

{
wt − νwxx = u22 − u21
w(t = 0, x) = 0

Note that u22 − u21 = −w(u1 + u2), allowing (7) to written as

(8)

{
wt − νwxx = −w (u1 + u2)

w(t = 0, x) = 0

The weak formulation associated with (8) is

(9) (wt, v) + ν ((w, v)) = (−w (u1 + u2) , v)

for v ∈ Vm and where (f, g) =
∫
T fgdx and ((f, g)) =

∫
T fxgxdx. Now choose v = w. Assume that u1, u2 ≥ 0.

Then

(wt, w) + ν ((w,w)) = (−w (u1 + u2) , w)∫
T
wwtdx+ ν

∫
T
w2
xdx = −

∫
T
w2 (u1 + u2) dx

d

dt

∫
T

1

2
w2dx+ ν

∫
T
w2
xdx = −

∫
T
w2 (u1 + u2) dx

≤ 0

Note that
∫
T w

2
xdx+

∫
T w

2dx = ||w||2H1 . Let

(10) E(t) :=

∫
T

1

2
w2(t, ·)dx

be the total energy at time t. Then

E′(t) + ν

∫
T
w2
xdx ≤ 0

E′(t) + ν

∫
T
w2
xdx+ ν

∫
T
w2dx ≤ ν

∫
T
w2dx

E′(t) + ν||w||2H1 ≤ 2νE(t)

Applying Grönwall’s Inequality yields

(11) E(t) ≤ e
∫ t
0
2νds

(
E(0)−

∫ t

0

ν||w(s, ·)||2H1ds

)
Note that

∫ t
0
ν||w2(s, ·)||2H1ds ≥ 0 and E(0) = 0, so

(12) E(t) ≤ 0
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Note that for E(t) =
∫
T w

2(t, x)dx ≥ 0, E(0) = 0. Thus, w ≡ 0 a.e., i.e. um1 = um2 a.e for all m. Then assume
u is bounded, which will be verified in the last section. By Dominated convergence theorem, we have

lim
m→∞

∫ ∫
(um1 − um2)vdxdt =

∫ ∫
(u1 − u2)vdxdt = 0

for all v, hence, u1 = u2 a.e. and uniqueness follows.

3.5. Mild Solution.

Definition 3.4. Mild Solution
For the reaction-diffusion equation {

ut − νuxx = −u2 in [0, T ]× T
u(t = 0, x) = g(x)

the solution satisfying:

(13) u(t, x) = S(t)g +

∫ t

0

[−S(t− s)u2(s)]ds

is called the mild solution. S(t) is a semi-group defined as follows:

S(t, ·)g(·) = Φ(t, ·) ∗ g(·) =

∫
R

1√
4tνπ

e
−|x−y|2

4tν g(y)dy

with Φ(t, x) = 1√
4tνπ

e
−|x|2
4tν being called the heat kernel for the whole domain. In order to keep consistency

with periodic domain, one call also write the periodic heat kernel ΦT(t, x) =
∑∞
k=−∞

1√
4tπν

e−
(y−k)2

4tν , then, the

simi-group is defined as follows: S(t, ·)g(·) =
∫
T
∑∞
k=−∞

1√
4tπν

e−
(y−k)2

4tν g(x− y)dy.

Note: This kind of mild solution is a solution depending on itself, and as such must be treated iteratively
when refering to a numerical approach.

Theorem 3.5. Banach Fixed Point Theorem Let X be a Banach space and T : X → X a linear operator.
Suppose ∃ q ∈ [0, 1) such that ∀x, y ∈ X, ||Tx − Ty||X ≤ q||x − y||X , then T has a unique fixed point with
Tx = x.

3.5.1. Application of Banach Fixed Point Theorem. In order to apply this theorem, we define the following
mapping:

T : X → X

T (u) = S(t)g(x)−B[u, u](14)

where B[u, v] =
∫ t
0
S(t− s) (u(s, y)v(s, y)) ds, and X being our solution space which we are free to pick. We

will justify that T maps X into itself later.

3.5.2. Picking the Banach space X. Choose X = ET = {u ∈ L∞([0, T ];Lp(T)) : ||u||ET ≤ δ} with ||u||ET :=
||u||L∞Lp , and δ a small positive constant.

3.5.3. T (u) ∈ ET. Let us first make the assumption

||B[u, v]||ET ≤ c||u||ET ||v||ET
for some constant c.
From this we have

||T (u)||ET ≤ ||S(t)g(x)||ET + ||B[u, u]||ET
≤ ||S(t)g(x)||ET + c||u||2ET

By the choice of ET we then have

||T (u)||ET ≤ ||S(t)g(x)||ET + cδ2

≤ ||g(x)||Lp + cδ2

where the last inequality follows from the Young’s inequality for convolution and ||Φ(t, ·)||L1 = 1 ∀t.
If we require ||g(x)||Lp ≤ δ

2 and cδ2 ≤ δ
2 , we then have T (u) : ET → ET with δ < 1

2c .
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3.5.4. Checking T is a Contraction Mapping. In this part, we show that T is a contraction mapping, i.e. proving
that T satisfies

||T (u)− T (v)||ET ≤ q||u− v||ET
where q ∈ [0, 1). From (14) we have

||T (u)− T (v)||ET = ||B[u, u]−B[v, v]||ET
= ||B[u, u− v] +B[v, u− v]||ET

From our previous assumption we then have

||T (u)− T (v)||ET ≤ c(||u||ET ||u− v||ET + ||v||ET ||u− v||ET)

≤ c||u− v||ET(||u||ET + ||v||ET)

With the choice of the space ET we then have

||T (u)− T (v)||ET ≤ 2δc(||u− v||ET)

Choose δ < 1
2c such that

||T (u)− T (v)||ET < ||u− v||ET
So with sufficiently small initial data, i.e. ||g(x)||Lp ≤ δ

2 <
1
4c combined with the assumption of ||B[u, v]||ET ,

then ∃! u(x, t) ∈ ET that satisfies (14) by the Banach Fixed Point Theorem.

3.5.5. Verify the assumption of B[u, v]. We have

B[u, v] =

∫ t

0

Φ(t− s, ·) ∗ (u(s, ·)v(s, ·))ds(15)

=

∫ t

0

∫
T

Φ(t− s, x− y)u(s, y)v(s, y)dyds

=

∫ t

0

1√
4(t− s)νπ

∫
T
e
−|x−y|2
4(t−s)ν u(s, y)v(s, y)dyds

By Minkowski’s inequality for integrals,

||B[u, v]||Lp ≤
∫ t

0

||Φ(t− s, ·) ∗ (u(s, ·)v(s, ·))||Lpds

By Young’s Convolution Inequality, Hölder’s inequality, and fixing t ∈ [0, T ] we then have

||B[u, v]||Lp ≤
∫ t

0

1√
4(t− s)νπ

||e
−x2

4(t−s)ν ||Lr ||u(s, ·)||Lp ||v(s, ·)||Lpds

where 1 +
1

p
=

1

r
+

1

p
+

1

p
, namely, 1 =

1

r
+

1

p
By taking the essential sup in time we get

||B[u, v]||ET ≤
∫ t

0

1√
4(t− s)νπ

||e
−x2

4(t−s)ν ||Lrds||u||ET ||v||ET

In order to show that

||B[u, v]||ET ≤ c||u||ET ||v||ET
we need now only prove that

∫ t
0
||Φ(t− s, ·)||Lrds is finite for any time t ∈ [0, T ]. Note(∫

T

(
e
−x2

4ν(t−s)

)r
dx

) 1
r

=

(∫
T
e
−rx2

4ν(t−s) dx

) 1
r

=

(
4πν(t− s)

r

) 1
2r

Absorbing all constants into α we now have

||B[u, u]||ET
||u||2ET

≤ α

∫ t

0

(t− s)
−1
2 (t− s) 1

2r ds

≤ α

∫ t

0

(t− s) 1
2 (

1
r−1)ds

≤ β(t− s) 1
2r+

1
2 |t0

Where β has absorbed the integration constant. For this value to be finite for any time t, we need 1
2r + 1

2 ≥ 0,

thus r = 1− 1
p ≥ 0 satisfies.
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3.5.6. Conclusion. To summarize, we have proven that we can use the Banach Fixed Point Theorem combined
with the assumption

||B[u, v]||ET ≤ c||u||ET ||v||ET
to find a unique mild solution u(t,x) for the reaction diffusion equation with the reaction term R(u)=-u2. As
this solution depends on itself we are then able to use this iterative process{

uk+1 = Tuk

u0 = g(x)

for our final solution.
Due to the method of this procedure this result can be extended to the reaction term R(u)=u2 as well.

4. Reaction term R(u) = u(1− u)

4.1. Existence. The weak formulation is

(16) 〈ut, v〉+ ν((u, v)) = 〈u(1− u), v〉 ∀v ∈ H1(T)

4.1.1. Uniform boundedness of max0≤t≤T ||u||2L2 .

Choose v = um ∈ V as test function in (4), assume u ≥ 0 by its physical meaning,∫
utudx+ ν

∫
u2xdx =

∫
u2(1− u)dx

d

dt

∫
1

2
u2dx+ ν

∫
u2xdx =

∫
u2 − u3dx ≤

∫
u2dx

Define E(t) =
∫
u2dx

d

dt

∫
u2dx ≤ 2

∫
u2dx

⇒ E′(t) ≤ 2E(t)

By Grönwall inequality,

⇒ E(t) ≤ e2tE(0) = e2t||g||2L2 ∀t ∈ [0, T ]

Hence, ∫
u2dx ≤ e2T ||g||2L2

⇒ max
0≤t≤T

||u||2L2 ≤ e2T ||g||2L2 .

4.1.2. Uniform boundedness of um in L2([0, T ];H1(T)).

Let test function v = um ∈ Vm ∫
utudx+ ν

∫
u2xdx =

∫
u2(1− u)dx

d

dt

∫
1

2
u2dx+ ν

∫
u2xdx =

∫
u2 − u3dx ≤

∫
u2dx

Define E(t) =
∫
u2dx

d

dt

∫
u2dx+ 2ν

∫
u2xdx+ 2ν

∫
u2dx ≤ 2

∫
u2dx+ 2ν

∫
u2dx

⇒ E′(t) + 2ν||u||2H1 ≤ (2 + 2ν)E(t)

By Grönwall inequality,

E(t) ≤ e
∫ t
0
2+2νds

(
E(0) +

∫ t

0

−2ν||u(s, ·)||2H1ds

)
Solve for ||u||L2H1 to get

e(2+2ν)t2ν||u||L2H1 ≤ e(2+2ν)tE(0)− E(t)
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⇒ ||u||L2H1 ≤ E(0)

2ν
=
||g||2L2

2ν

4.1.3. Uniform boundedness umt in L1([0, T ];H−1(T)).

Let v1 ∈ Vm, by the same decomposition of H1(T) in previous section, we get

〈ut, v〉 = −ν((u, v1)) + (u, v1)− (u2, v1) ∀v ∈ H1(T).

Then,

| 〈ut, v〉 | ≤ ν|((u, v1))|+ |(u, v1)|+ |(u2, v1)|
≤ ν||u||H1 ||v1||H1 + ||u||L2 ||v1||L2 + ||u2||L2 ||v1||L2

≤ ν||u||H1 ||v||H1 + ||u||H1 ||v||H1 + ||u2||L2 ||v||H1

⇒ | 〈ut, v〉 |
||v||H1

≤ (ν + 1)||u||H1 + ||u2||L2

By the definition ||ut||H−1 = supv∈H1(T)
| 〈ut, v〉 |
||v||H1

, we have

(17) ||ut(t, ·)||H−1 ≤ (ν + 1)||u(t, ·)||H1 + ||u(t, ·)||2L4

Take L1 integral over [0, T ]∫ T

0

||ut(s, ·)||H−1ds ≤ (ν + 1)

∫ T

0

||u(s, ·)||H1ds+

∫ T

0

||u(s, ·)||2L4ds

⇒ ||ut||L1H−1 ≤ (ν + 1)||u||L1H1 + ||u||L2L4

By Sobolev embedding H1 ↪→ L4, we get
||u||L4 ≤ C||u||H1

⇒ ||u||L2L4 ≤ C||u||L2H1

By Hölder inequality, we get

||u||L1H1 ≤
√
T ||u||L2H1

Hence, we get

||ut||L1H−1 ≤ (ν + 1)
√
T ||u||L2H1 + C||u||L2H1

≤ ((ν + 1)
√
T + C)||u||L2H1

≤ C̃||g||2L2

Since umt is uniformly bounded in L1H−1, by Banach-Alaoglu theorem, umt converges weakly to a limit
point u′ in MH−1 up to a subsequence.

4.1.4. Extended Uniform boundedness umt in L2([0, T ];H−1(T)).

First, consider the following ode problem:

(18)

{
ut = u(1− u) in [0, T ]× T
u(t = 0, x) = b where 0 ≤ b ≤ 1

One can easily check that u = 0, 1 are two steady state solutions of this ODE. And u = 1 is the only stable
solution. Then by the ODE theory, we know that if initial data b lies in [0, 1], our solution u will also lie in
[0, 1]. The diffusion term doesn’t destroy this structure, hence, in this section, we assume the solution of the
corresponding reaction diffusion equation lies in [0, 1] with initial data provided in [0, 1].
Now, Let’s focus on (17)

||ut(t, ·)||H−1 ≤ (ν + 1)||u(t, ·)||H1 + ||u(t, ·)||2L4

Take L2 integral over [0, T ]∫ T

0

||ut(s, ·)||2H−1ds ≤ (ν + 1)2
∫ T

0

||u(s, ·)||2H1ds+

∫ T

0

||u(s, ·)||4L4ds+

∫ T

0

2(ν + 1)||u||H1 ||u||2L4ds

⇒ ||ut||L2H−1 ≤
(
(ν + 1)2 + 2(ν + 1)

)
||u||L2H1 + ||u||L2L2

Where the last inequality is valid due to ||u||4L4 =
∫
u4dx ≤

∫
u2dx = ||u||2L2 and ||u||2L4 =

(∫
u4dx

)1/2 ≤(∫
u2dx

)1/2
= ||u||L2 ≤ ||u||H1 by 0 ≤ u ≤ 1.Hence, ||umt||L2H−1 is uniformly bounded by the uniform

boundedness of ||u||L2H1 and max0≤t≤T ||u||2L2 .
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4.2. Passing the limit to the non-linear term.

(u(1− u), v) = (u, v)− (u2, v)

By the uniform boundedness of max0≤t≤T ||u||2L2 and Banach-Alaoglu Theorem, we know that

(um, v)→ (u, v)

As the same procedure in 3.3.5 by Aubin-Lions Lemma, we know that(
u2m, v

)
→
(
u2, v

)
Thus, combined with the results in previous section 4.1, we get

lim
j→∞

((
umjt, v

)
+ ν

((
umj , v

)))
= lim

j→∞

(
umj

(
1− umj

)
, v
)

= lim
j→∞

((
umj , v

)
−
(
u2mj , v

))
〈ut, v〉+ ν((u, v)) = (u, v)−

(
u2, v

)
= 〈(u(1− u), v〉

for v ∈ H1
0 . One can easily check that u′, the limit point of umjt , satisfies the initial condition. Thus, by the

same procedure in 3.3.6, u is a weak solution in L2([0, T ];H1(T)).

4.3. Uniqueness.

Let u1, u2 ∈ L2([0, T ];H1(T)) be two weak solutions of

(19)

{
ut − νuxx = u(1− u)

u(t = 0, x) = g(x)

Then w = u1 − u2 satisfies

(20)

{
wt − νwxx = u1 (1− u1)− u2 (1− u2)

w(t = 0, x) = 0

Note that

u1 (1− u1)− u2 (1− u2) = u1 − u2 + u22 − u21
= w − w (u1 + u2)

Then (20) can be written as

(21)

{
wt − νwxx = w − w (u1 + u2)

w(t = 0, x) = 0

The weak formulation associated with (21) is

(22) (wt, v) + ν ((w, v)) = (w − w (u1 + u2) , v)

for v ∈ Vm and where (f, g) =
∫
T fgdx and ((f, g)) =

∫
T fxgxdx. Now choose v = w. Assume that u1, u2 ≥ 0.

Then

(wt, w) + ν ((w,w)) = (w − w (u1 + u2) , w)∫
T
wwtdx+ ν

∫
T
w2
xdx =

∫
T

(
w2 − w2 (u1 + u2)

)
dx

d

dt

∫
T

1

2
w2dx+ ν

∫
T
w2
xdx =

∫
T

(
w2 − w2 (u1 + u2)

)
dx

≤
∫
T
w2dx

Note that
∫
T w

2
xdx+

∫
T w

2dx = ||w||2H1 . Let

(23) E(t) :=

∫
T

1

2
w2(t, ·)dx

be the total energy at time t. Then

E′(t) + ν

∫
T
w2
xdx ≤

∫
T
w2dx

E′(t) + ν

∫
T
w2
xdx+ ν

∫
T
w2dx ≤

∫
T
w2dx+ ν

∫
T
w2dx

E′(t) + ν||w||2H1 ≤ (2ν + 2)E(t)
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Applying Grönwall’s Inequality yields

(24) E(t) ≤ e
∫ t
0
(2ν+2)ds

(
E(0)−

∫ t

0

ν||w(s, ·)||2H1ds

)
Note that

∫ t
0
ν||w2(s, ·)||2H1ds ≥ 0 and E(0) = 0, so

(25) E(t) ≤ 0

Because E(t) ≥ 0, E(t) = 0. Therefore, w ≡ 0, and u1 = u2. Then, we get the uniqueness for um by the same
procedure of previous subsection for case R(u) = −u2, we could extend this statement to the weak solution for
(19), and uniqueness L2([0, T ], H1(T)) is obtained.

4.4. Mild Solution.

For the reaction-diffusion equation

(26)

{
ut − νuxx = u− u2 in [0, T ]× T
u(t = 0, x) = g(x)

We first do transformation v = e−tu, so that one can convert (26) to the following:

(27)

{
vt − νvxx = −etv2 in [0, T ]× T
v(t = 0, x) = e−tg(x)

Assume v is the mild solution of (27), then, u = etv is the mild solution of (26). Now, focus on mild solution v.

Definition 4.1. The solution satisfies:

v(t, x) = S(t)g −
∫ t

0

[S(t− s)(v2(s)es)]ds

is called a mild solution of (27). Where S(t)g := Φ(t, x) ∗ g(x) with Φ(t, x) denotes heat kernel.

Now, let’s focus on the existence and uniqueness of mild solution for equation (27), after comparing (27)
and (13), notice that the only different part of proof between these two equations is the proof of assumption
||B[u, v]||X ≤ c||u||X ||v||X

Notice that for any t ∈ [0, T ],

B[u, v] :=

∫ t

0

Φ(t− s) ∗ [esu(s, ·)v(s, ·)]ds(28)

≤ eT
∫ t

0

Φ(t− s) ∗ [u(s, ·)v(s, ·)]ds

Hence, everything follows from the previous case where our reaction term was R(u) = −u2, up to a constant.

5. Reaction term R(u) = u(1− u)(α− u)

In this chapter, consider the following reaction-diffusion equation:

(29)

{
ut − νuxx = u(1− u)(α− u) in [0, T ]× T
u(t = 0, x) = g(x)

First, consider the following ode problem:

(30)

{
ut = u(1− u)(α− u) in [0, T ]× T
u(t = 0, x) = b where 0 ≤ b ≤ 1

One can easily check that u = 0, 1, α are three steady state solutions of this ODE. And u = α is the only stable
solution. Then by the ODE theory, we know that if initial data b lies in [0, 1], our solution u will also lie in
[0, 1]. The diffusion term doesn’t destroy this structure, hence, in this section, we assume the solution of (29)
lies in [0, 1] with initial data provided in [0, 1].

5.1. Existence. The weak formulation is

(31) < ut, v > +ν((u, v)) =< u(1− u)(α− u), v > ∀v ∈ H1(T); 0 < α < 1
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5.1.1. Uniform boundedness of max0≤t≤T ||u||2L2 .

Choose v = um ∈ V as test function in (31), assume 0 ≤ u ≤ 1,∫
utudx+ ν

∫
u2xdx =

∫
u2(1− u)(α− u)dx

d

dt

∫
1

2
u2dx+ ν

∫
u2xdx = α

∫
u2dx− (α+ 1)

∫
u3dx+

∫
u4dx ≤ (α+ 1)

∫
u2dx

In the last inequality, we used the assumption u ∈ [0, 1], then u4 ≤ u2.
Define E(t) =

∫
u2dx

d

dt

∫
u2dx ≤ 2(α+ 1)

∫
u2dx

⇒ E′(t) ≤ 2(α+ 1)E(t)

By Grönwall inequality,

⇒ E(t) ≤ e2(α+1)tE(0) = e2(α+1)t||g||2L2∀t ∈ [0, T ]

Hence, ∫
u2dx ≤ e2(α+1)t||g||2L2

⇒ max
0≤t≤t

||u||2L2 ≤ e2(α+1)T ||g||2L2 .

5.1.2. Uniform boundedness of um in L2([0, T ];H1(T)).

Choose v = um ∈ Vm as test function in (31), assume 0 ≤ u ≤ 1,∫
utudx+ ν

∫
u2xdx =

∫
u2(1− u)(α− u)dx

d

dt

∫
1

2
u2dx+ ν

∫
u2xdx = α

∫
u2dx− (α+ 1)

∫
u3dx+

∫
u4dx ≤ (α+ 1)

∫
u2dx

Define E(t) =
∫
u2dx

d

dt

∫
u2dx+ 2ν

∫
u2xdx+ 2ν

∫
u2dx ≤ 2(α+ 1)

∫
u2dx+ 2ν

∫
u2dx

⇒ E′(t) + 2ν||u||2H1 ≤ 2(α+ ν + 1)E(t)

By Grönwall inequality,

E(t) ≤ e
∫ t
0
2(α+ν+1)ds

(
E(0) +

∫ t

0

−2ν||u(s, ·)||2H1ds

)
Solve for ||u||L2H1 we get

e2(α+ν+1)t2ν||u||L2H1 ≤ e2(α+ν+1)tE(0)− E(t)

⇒ ||u||L2H1 ≤ E(0)

2ν
=
||g||2L2

2ν
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5.1.3. Uniform boundedness of umt in L2([0, T ];H−1(T)).

Let v1 ∈ Vm, by the same decomposition of H1(T) as previously, we get:

〈ut, v〉 = α(u, v)− (α+ 1)(u2, v) + (u3, v)− ν((u, v)) ∀v ∈ H1(T).

Then,

| 〈ut, v〉 | ≤ α|(u, v)|+ (α+ 1)|(u2, v)|+ |(u3, v)|+ ν|((u, v))|
≤ α||u||H1 ||v||H1 + (α+ 1)||u||L2 ||v||L2 + ||u||L2 ||v||L2 + ν||u||H1 ||v||H1

≤ (2α+ 2 + ν)||u||H1 ||v||H1

⇒ | 〈ut, v〉 |
||v||H1

≤ (2α+ 2 + ν)||u||H1

By the definition ||ut||H−1 = supv∈H1(T)
| 〈ut, v〉 |
||v||H1

, then we have

||ut(t, ·)||H−1 ≤ (2α+ 2 + ν)||u||H1

Take L2 integral over [0, T ]∫ T

0

||ut(s, ·)||2H−1ds ≤ (2α+ 2 + ν)2
∫ T

0

||u(s, ·)||2H1ds = (2α+ 2 + ν)2||u||L2H1

Since umt is uniformly bounded in L2H−1, by Banach-Alaoglu theorem, umt converges weakly to a limit
point u′ in L2H−1 up to a subsequence.

5.2. Passing the limit to the nonlinear terms.

(u(1− u)(α− u), v) =
(
u3, v

)
− (α+ 1)

(
u2, v

)
+ α(u, v)

By the uniform boundedness of max0≤t≤T ||u||2L2 and Banach-Alaoglu Theorem, we know that

(um, v)→ (u, v)

By the same procedure in 3.3.4 by Aubin-Lions Lemma, we know that(
u2m, v

)
→
(
u2, v

)
Assume u3m − u3 ≥ 0. Then∫

T

(
u3m − u3

)
vdx =

∫
T

(um − u) v
(
u2m + umu+ u2

)
dx

≤ 3

∫
T

(um − u) vdx

Note that max0≤t≤T ||um||2L2 is uniformly bounded. Then by the Banach-Alouglu theorem, there exists a

subsequence umj such that umj ⇀ u in L2L2. Thus 3
∫
T
(
umj − u

)
vdx → 0. Note that if u3m − u3 ≤ 0, then

repeating the proof with
∫
T
(
u3m − u3

)
vdx works. Thus(

u3m, v
)
→
(
u3, v

)
Thus,

lim
j→∞

((
umjt, v

)
+ ν

((
umj , v

)))
= lim

j→∞

(
umj

(
1− umj

) (
α− umj

)
, v
)

= lim
j→∞

((
u3mj , v

)
− (α+ 1)

(
u2mj , v

)
+ α

(
umj , v

))
〈ut, v〉+ ν((u, v)) =

(
u3, v

)
− (α+ 1)

(
u2, v

)
+ α(u, v)

= 〈u(1− u)(α− u), v〉

for v ∈ H1
0 . By the same procedure in 3.3.6, thus, u is a weak solution in L2

(
[0, T ], H1(T)

)
.
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5.3. Uniqueness. Let u1, u2 ∈ L2
(
[0, T ], H1(T)

)
be weak solutions of

(32)

{
ut − νuxx = u(1− u)(α− u)

u(t = 0, x) = g(x)

Let w = u1 − u2. Then w satisfies

(33)

{
wt − νwxx = αw − (α+ 1)w (u1 + u2) + w

(
u21 + u1u2 + u22

)
w(t = 0, x) = 0

The weak formulation associated with (33) is

(34) (wt, v) + ν((w, v)) = α(w, v)− (α+ 1) (w (u1 + u2) , v) +
(
w
(
u21 + u1u2 + u22

)
, v
)

for v ∈ Vm and where (f, g) =
∫
T fgdx and ((f, g)) =

∫
T fxgxdx. Now choose v = w. Because 0 ≤ u1 ≤ 1 and

0 ≤ u2 ≤ 1, u1 + u2 ≤ 2 and u21 + u1u2 + u22 ≤ 3. Define E :=
∫
T w

2dx. Then

(wt, w) + ν((w,w)) = α(w,w)− (α+ 1) (w (u1 + u2) , w) +
(
w
(
u21 + u1u2 + u22

)
, w
)∫

T
wtwdx+ ν

∫
T
w2
xdx = α

∫
T
w2dx− (α+ 1)

∫
T
w2 (u1 + u2) dx+

∫
T
w2
(
u21 + u1u2 + u22

)
dx

1

2

d

dt

∫
T
w2dx ≤ α

∫
T
w2dx+ 2(α+ 1)

∫
T
w2dx+ 3

∫
T
w2dx

1

2
E′(t) ≤ (α+ 2(α+ 1) + 3)E(t)

E′(t) ≤ (6α+ 10)E(t)

Then by Grönwall’s inequality,

(35) E(t) ≤ E(0)e
∫ T
0

(6α+10)dt

Because E(0) = 0 and
∫ T
0

(6α+ 10)dt is finite, E(t) ≤ 0. Thus, u1 ≡ u2, i.e. the solution of (32) is unique.

5.4. Mild solution.

The proof of R(u) = u(1 − u) could survive successfully here up to the constant 2 by the fact that 0 ≤ u ≤ 1,
|α− u| ≤ 2.

6. Regularity of weak solution

In this section, we show the instant regularization of reaction equations discussed in this paper. Consider

ut − νuxx = −u2

6.1. Hk energy estimate. ∫
∂kxu · ∂kx

(
ut − νuxx + u2

)
dx = 0(36)

d

dt

1

2

∫
|∂kxu|2dx− ν

∫
∂kxu · ∂k+2

x udx+

∫
∂kxu · ∂kx(u2)dx = 0

Denote I1 = −ν
∫
∂kxu · ∂k+2

x udx, I2 =
∫
∂kxu · ∂kx(u2)dx. For I1, by integration by parts,

I1 = ν

∫
|∂k+1
x u|2dx ≥ 0

By Leibniz rule ∂kx(u2) =
∑k
j=0

(
k
j

)
∂kxu · ∂k−jx u, we deal with the jth term of I2, apply Hölder inequality, we get∫

∂kxu · ∂jx · ∂k−jx udx ≤ ||∂kxu||L2 ||∂jxu||Lp1 ||∂k−jx u||Lp2

where
1

p1
+

1

p2
=

1

2

By Gragliardo-Nirenberg interpolation equation, we know

||∂jxu||Lp1 ≤ C1||∂kxu||Lα1 ||u||1−α1

L∞ with
1

p1
= j + (

1

2
− k)α1 +

1− α1

∞
(37)

||∂k−jx u||Lp2 ≤ C2||∂kxu||Lα1 ||u||1−α1

L∞ with
1

p1
= j + (

1

2
− k)α1 +

1− α1

∞
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Notice

α1 + α2 =

1
p1
− j

1
2 − k

+

1
p2
− k + j
1
2 − k

=

1
p1

+ 1
p2
− k

1
2 − k

= 1

we get |I2| ≤ C||∂kxu||2L2 ||u||L∞ where C is a constant depends on k and domain T.

Denote Ek(t) :=
∫
|∂kxu|2dx,

we get

1

2
E′k(t) + I1 ≤ CEk(t)||u||L∞(38)

by maximum principle, ≤ CEk(t)||g||L∞

Note I1 ≥ 0, hence, E′k(t) ≤ 2CEk(t)||g||L∞ , by Grönwall inequality, we get Hk energy estimate

Ek(t) ≤ ||∂kxg||2L2e2CT ||g||L
∞

Claim 6.1. ∀m ∈ N, tm||∂k+mx u(t, ·)||2L2 is uniformly bounded in t, namely, ∀t ∈ [0, T ], ||∂k+mx u(t, ·)||2L2 ≤
C(m,T )t−m, where C(m,T ) is a constant depends on m and T .

Proof. We do induction on m.

(1) m = 0, the argument is true by previous Hk energy estimate, with C(0, T ) = ||∂kxg||2L2eCT ||g||L
∞ .

(2) Suppose the argument is true for m.
(3) Show it is true for m+ 1.

Consider the Hs energy estimate for (k+m)th order derivative, we get the similar inequality by replace k with
k +m. Denote Ek+m(t) :=

∫
|∂k+mx u|2dx,

(39)
1

2
E′k+m(t) + ν

∫
|∂k+m+1
x u|2dx ≤ CEk+m(t)||g||L∞

Note
∫
|∂k+m+1
x u|2dx ≥ 0, then we get

1

2
E′k+m(t) ≤ CEk+m(t)||g||L∞

By Grönwall inequality over [ t2 , t], for any τ ∈ [ t2 , t],

Ek+m(τ) ≤ Ek+m(
t

2
)e

∫ t
t
2
2C||g||L∞ds

(40)

By case(2) ≤ C(m,T )(
t

2
)−meCT ||g||L∞

Integrate (39) over [ t2 , t], we get

∫ t

t
2

||∂k+m+1
x u(s, ·)||2L2ds ≤ 1

2ν

(∫ t

t
2

2C||g||L∞Em+k(s)ds− Em+k(t) + Em+k(
t

2
)

)

≤ 1

2ν

(∫ t

t
2

2C||g||L∞Em+k(s)ds+ Em+k(
t

2
)

)

by(40) ≤ 1

2ν
(2TC||g||L∞ + 1)

(
t

2

)−m
C(m,T ) + eCT ||g||L∞

≤ C ′(m,T )

(
t

2

)−m
By mean value theorem, we know∫ t

t
2

||∂k+m+1
x u(s, ·)||2L2ds =

t

2
||∂k+m+1

x u(τ1, ·)||2L2 for some τ ∈ [
t

2
, t]

Hence,

Em+k+1(τ) = ||∂k+m+1
x u(τ, ·)||2L2 ≤ C(m+ 1, T )t−m−1

Finally, we run Hk+m+1 energy estimate from τ to t, we get

||∂k+m+1
x u(t, ·)||2L2 ≤

1

2γ

(∫ t

τ

2CEk+m+1(s)||g||L∞ds− Ek+m+1(t) + Ek+m+1(τ)

)
≤ C(m+ 1, T )t−m−1

The result follows. �
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6.2. Extend result to other cases.

(1) For reaction term R(u) = u(1− u) = u− u2
The only extra term is u, when we do Hs energy estimate, this term u only gives us −

∫
∂kxu ∗ ∂kxudx =

−Ek(t) which cause no trouble at all.
(2) For reaction term R(u) = u(1− u)(α− u)

Since 0 ≤ u ≤ 1, the extra term u3 could be bounded by u2 or u which go back to the the case
R(u) = −u2 or R(u) = u(1− u).
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