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1 Introduction

In this note, we will focus on the support vector machine and explore the KKT conditions and duality.

2 Unconstrained optimization problem

3 Constrained optimization problem

For constrained optimization problem, one way to solve it is convert it into a unconstrained one and then all
the tools of unconstrained optimization problem could be used. Otherwise, one can convert it into another
constrained problem but with much easier constrains which makes the problem is easier to solve.

Assume f, gi, hj are continuous and differentiable in Ω. A general constrained optimization problem could
be formulated as follows:

minx∈Ω f(x) (3.1)

Where Ω = {x ∈ Rn|gi(x) = 0, i = 1...,m, hj(x) ≤ 0, j = 1..., l}.
We could also write it as the following form:

minx∈Rn f(x)

s.t. g(x) = 0

h(x) ≤ 0

(3.2)

where g = (g1, ..., gm) and h = (h1, ..., hl).

We could extend f into the whole domain by add the constrains through Lagrangian multipliers. First, we
write down the Lagrangian function

L(x,α,µ) = f(x) +

m∑
i=1

αigi(x) +

l∑
j=1

µjhj(x) (3.3)

where µ ≥ 0 elementwise and α,µ are Lagrangian multipliers or dual variables. Then, one can show that
the original constrained optimization problem is equivalent to the unconstrained optimization problem on the
extend f .

fextend = maxαmaxµ≥0 L(x,α,µ) (3.4)

Note

fextend =

{
f(x), x ∈ Ω

+∞, x ∈ Ωc (3.5)

If x ∈ Ω, then, maxαmaxµ≥0 L(x,α,µ) = f(x) since g = 0 and µh(x) ≤ 0. Otherwise, there exists an x
such that gi(x) ̸= 0 or hj(x) > 0. Then, L will approach +∞ as corresponding α or µ goes to ∞. After the
discussion above, obsequiously, we know

minx∈Ω f(x) = minx∈Rn fextend = minx∈Rn maxαmaxµ≥0 L(x,α,µ) (3.6)

Hence, the key is to extend the function beyond Ω using a hard wall potential so that the extended function is
infinite beyond Ω. Now, we are ready to move further for solving this unconstrained optimization problem.
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4 Primal and Dual problems

Problem (3.2) is referred to as primal problem and there is the corresponding dual problem which is searching for
the best lower bound of the primal optimal denoted p∗. The dual problem is obtained through the Lagrangian
(3.3) and the constrains on dual variables. Note that x is the primal variable, α,µ are the dual variables.

Dual function is defined as the infimum of Lagrangian function over primal variable x ∈ Rn:

G(α,µ) = minx∈Rn L(x,α,µ) = L(x∗,α,µ) (4.1)

Note that, sinceG is defined as a point-wise minimum, it is a concave function. We could solve this unconstrained
optimization problem by finding the stationary point. Clearly, x∗ satisfies

∇xL(x
∗,α,µ) = ∇xf(x

∗) +

m∑
i=1

αi∇xgi(x
∗) +

l∑
j=1

µj∇xhj(x
∗) = 0 (4.2)

Hence, one can write x∗ = x(α,µ).
One can easily find the relationship of the objective value and the dual function value, denote the primal

optimal p∗, then, we have
∀x feasible, f(x) ≥ L(x,α,µ) ≥ G(α,µ) (4.3)

That is, the dual function provides a lower bound on the objective value p∗ in the feasible set. The right-hand
side of the above inequality is independent of x. Taking the minimum over x in the above, we obtain

p∗ ≥ G(α,µ) (4.4)

Since this lower bound is valid for every dual variable µ ≥ 0,α, We can search for the best one, that is the
largest lower bound d∗:

p∗ ≥ d∗ := maxαmaxµ≥0 G(α,µ) (4.5)

we call this weak duality.
Hence, the Lagrangian dual problem is defined as

maxαmaxµ G(α,µ)

s.t. ∇xL(x,α,µ) = 0

µ ≥ 0

(4.6)

Note that the constrain on dual variable of inequality is natural, and the other constrain is determined by
solving the unconstrained optimization problem (4.1) whose optima are characterized by setting the derivative
with respect to primal variable x to zero.

Now, it is time to consider when will the primal problem and dual problem are attained. In the next section,
we will explore the necessary conditions for primal and dual optimum attainment and the procedure of how to
determine the optimal triples (x∗,α∗,µ∗).

4.1 Strong duality and KKT conditions

Strong duality: The theory of weak duality seen above states that p∗ ≥ d∗. This is true always, even if the
original problem is not convex. We say that strong duality holds if p∗ = d∗.

Slater’s sufficient condition for strong duality: Slater’s theorem provides a sufficient condition for
strong duality to hold. Namely, if

1. The primal problem is convex;

2. It is strictly feasible, that is, there exists x0 ∈ Rn such that g(x0) = 0, hi(x0) < 0, ∀i = 1, ...,m

then, strong duality holds: p∗ = d∗, and the dual problem is attained.

Sufficient condition for dual optimum attainment: Slater condition, namely strict feasibility of the
primal, ensures that the dual problem is attained.

Primal optimum attainment: Likewise, if in addition the dual problem is strictly feasible, that is if:

∃µ > 0, α ∈ Rm s.t. G(α,µ) > −∞,

then strong duality holds, and both problems are attained, that is: there exist (x,α,µ) such that x is feasible
for the primal problem; α,µ are feasible for the dual problem: µ ≥ 0, and (α,µ) ∈ domG.

Optimality conditions: The following conditions are called the Karush-Kuhn-Tucker (KKT) conditions
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1. Primal feasibility: g(x) = 0 (∇αL = 0), and h(x) ≤ 0

2. Dual feasibility: µ ≥ 0

3. Lagrangian stationarity: (in the case when every function involved is differentiable) ∇xL(x,α,µ) =

∇xf(x) +
∑m

i=1 αi∇xgi(x) +
∑l

j=1 µj∇xhi(x) = 0

4. Complementary slackness:
µjhj(x) = 0, j = 1, ..., l. (4.7)

Note the complementary slackness is derived from the strong duality

f(x∗) = G(α∗,µ∗) ≤ f(x∗) +

m∑
i=1

α∗
i gi(x

∗) +

l∑
j=1

µ∗
jhj(x

∗) ≤ f(x∗) (4.8)

The first equality is the strong duality, the first inequality follows from the definition of G and the second
inequality follows from the primal feasibility and dual feasibility. Hence, the complementary slackness follows.

If the problem is convex, and satisfies Slater’s condition, then a primal point is optimal if and only if there
exist (α,µ) such that the KKT conditions are satisfied. Conversely, the above conditions guarantee that strong
duality holds, and (x,α,µ) are optimal. In a summary, under the Slater’s condition, KKT conditions are the
necessary and sufficient conditions for (x,α,µ) to be optimal.

4.2 How to find the primal optimal

Now, the question goes back to searching for the primal optimal. One can solve the dual problem first to get
(α∗,µ∗) if the dual problem is easier to solve. Then, The procedure is:

1. write down the Lagrangian function according to the primal problem after rewrite it into the standard
form,

2. define the dual function as the minimum of Lagrangian over primal variable,

3. determine the constrains of dual problem using the 2nd, 3rd KKT conditions since they are the constrains
on dual variables. Usually, one can simplify the dual function using the 3rd condition (after this step one
usually end up with a convex optimization/quadratic programming problem),

4. solve for (α∗,µ∗) using the convex optimization/QP algorithm,

5. determine x∗ using the 4th condition (complementary slackness).

5 SVM with Hard margin

5.1 Formulate the model as an optimization problem/primal problem

As show in the Figure.5.1, they are two groups, w.l.o.g. we label the green ones by −1, and the blue ones by
1, and assume that these two groups are completely linear spreadable. then, there is a border-line (’support
vectors’) for each group, y = wTx+ b = −1 and y = wTx+ b = 1. All hyperplanes lie in these two planes could
separate these two groups. So how to determine the optimal one? The goal is to maximize the margin/gap
between these two border-line and choose the hyperplane that has the same distance to two groups. The points
lie on the margins are called support vectors since the classifier/hyper-plane is uniquely determine by these
support vectors. The classifier is define as: f(x) = sign(wTx+ b)

The distance between margins is d = |−1−b−(1−b)|√
(wTw)

= 2
||w||2 . The green points lie below or on the margin

y = wTx+ b = −1 satisfy y(wTx+ b) ≥ 1. The blue points lie above or on the margin y = wTx+ b = 1 satisfy
y(wTx+ b) ≥ 1. Then, We could formulate the problem into the constrained optimization problem as following

minw,b
1

2
||w||2

s.t. yi(w
Txi + b) ≥ 1, i = 1..., l

(5.1)

Now, we solving this problem by primal dual arguments and KKT conditions. first, we write down the La-
grangian function

L(w, b,µ) =
1

2
||w||2 +

l∑
i=1

µi[1− yi(w
Txi + b)] (5.2)
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Figure 5.1: schematic of svm download from online source

Then, the Lagrangian dual function is

G(µ) = minw∈Rn,b∈b L(w, b,µ) = L(w∗, b∗,µ) (5.3)

where w∗, b∗ satisfies

∇wL(w∗, b,µ) = w∗ −
l∑

i=1

µiyixi = 0 (5.4)

∇bL(w
∗, b,µ) =

l∑
i=1

µiyi = 0 (5.5)

hence,

w∗ =

l∑
i=1

µiyixi (5.6)

The Lagrangian dual problem is

maxµG(µ)

s.t. ∇wL(w, b,µ) = 0

∇bL(w, b,µ) = 0

µ ≥ 0

(5.7)

We plug (5.5) and (5.6)into it, we could simplify the dual problem as

maxµ

l∑
i=1

µi −
1

2

l∑
j=1

l∑
i=1

µjyj(x
T
j xi)µiyi

s.t. µ ≥ 0

l∑
j=1

µjyj = 0

(5.8)

The objective function of dual problem is a quadratic function of dual variable µ, hence, this is a quadratic
programming problem of µ which can be solved using well-developed techniques.
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5.2 Determine w∗, b∗

As the above stated, one could solve for µ∗ by QP programming. Then, how to get the solution/optimal of
primal problem? i.e. how to determine w∗, b∗? One can determine w∗, b∗ by the 3rd and 4th KKT conditions
which are the relations between primal variables and dual variables.

Find w∗ by ∇wL = 0 and complementary slackness condition:

w∗ =
∑

i=1,µi>0

µiyixi (5.9)

such xi are called support vectors, where µi > 0, the constrains are activated.

Find b∗ by ∇bL = 0 and complementary slackness condition:

µi[yi(w
Txi + b)− 1] = 0 (5.10)

by complementary slackness condition, we know µi∗ > 0 for some i∗, then, for every i∗, the following equation
is true

b =
1

yi∗
−wTxi∗ = yi∗ −wTxi∗ (5.11)

here we use the fact that 1
y = y since y = ±1 hence, in practice, we could determine b∗ by the average over i∗.

b∗ = mean(yi∗ −wTxi∗) (5.12)

Then, one can predict the class of a new point x by

sign

 ∑
i,µi>0

µiyix
T
i x+ b∗

 . (5.13)

One can verify that we solved both dual and primal problems and KKT conditions are satisfied by the 3 steps
stated below. Hence, (x∗,µ∗,α∗) are optimal!

• The assumption of regularity conditions (slater’s condition) ensures the primal feasible (1st condition in
KKT)

• The dual feasible µ ≥ 0 (2nd condition in KKT) are guaranteed when you solve the dual problem since
they are the constrains of dual problem

• The constrain on dual variable from 3rd condition in KKT and 4th condition are guaranteed when you
solve the dual problem since they are the constrains of dual problem (and the relation between primal
variables and dual variables is guaranteed when you solve for primal variables by dual variables)

6 SVM with Soft margin

In the soft margin case, the groups are not completely separated or the margin distance is too small if we classify
all points correctly. The goal is to make the margin wide enough and has much less wrongly classified points as
possible in the mean time. To quantify the target, we will use hinge function:

max{0, 1− yi(w
Txi + b)} ∀i = 1, ..., l (6.1)

is proportional to the distance from (xi, yi) to the hyperplane when the point is in the margin or in the wrong
side of the plane and it is zero while the points are outside the margin in the correct side of the plane.

The loss function could be define using hinge function as follows:

f(w, b) = C

l∑
i=1

max{0, 1− yi(w
Txi + b)}+ 1

2
||w||2 (6.2)

The first term is to penalty the points that lie in the margin or in the wrong margin. The second term is to
maximize the margin distance. Since the function max{0, y} is not differentiable, hence, one need to convert it
into a differentiable problem by imposing new variables and corresponding constrains. Define

ξi = max{0, 1− yi(w
Txi + b)} (6.3)

5



Then, we get the primal problem:

minw,b,ξ f(w, b) = C

l∑
i=1

ξi +
1

2
||w||2

s.t. ξ ≥ 0 ∀i = 1..., l

− yi(w
Txi + b) ≤ ξi − 1 ∀i = 1..., l

(6.4)

Lagrangian function is

L(w, b, ξ) =
1

2
||w||2 + C

l∑
i=1

ξi −
l∑

i=1

αiξi +

l∑
i=1

µi[1− ξi − yi(w
Txi + b)] (6.5)

The Lagrangian dual function is
G(α,µ) = min(w,b,ξ)L(w, b, ξ,α,µ) (6.6)

By the 3rd condition in KKT, note that (w, b, ξ) are primal variables, then, we have

∇wL = w −
l∑

i=1

µiyixi = 0 (6.7)

∇bL =

l∑
i=1

µiyi = 0 (6.8)

∇ξL = C − αi − µi = 0 (6.9)

plug (6.7) into dual function to satisfy it, we get dual function:

G(α,µ) = C

l∑
i=1

ξi +
1

2

l∑
i=1

l∑
j=1

µiyi(xi · xi)µjyj −
l∑

i=1

αiξi +

l∑
i=1

µi −
l∑

i=1

ξiµi −
l∑

i=1

µiyi(w
Txi)−

l∑
i=1

µiyib

(6.10)

=

l∑
i=1

µi −
1

2

l∑
i=1

l∑
j=1

µiyi(xi · xi)µjyj by(6.8, 6.9) (6.11)

Hence, the dual problem is given by

maxµG(µ) =

l∑
i=1

µi −
1

2

l∑
i=1

l∑
j=1

µiyi(xi · xi)µjyj

s.t.

l∑
i=1

µiyi = 0 ∀i = 1, ..., l

µi ≥ 0 ∀i = 1, ..., l

µi ≤ C ∀i = 1, ..., l

(6.12)

The last constrain is obtained by µi + αi = C and αi ≥ 0 and then dual function is a quadratic function only
of µ with linear constrains. It is efficiently solvable by quadratic programming algorithms.

6.1 Determine w, b, ξi, αi via KKT conditions

After find the µ∗ by solving dual problem via QP algorithm, one can determine

w∗ =
∑
i

µiyixi (6.13)

for i such that µi > 0 and such xi are called support vectors. Note that these support vectors are either
incorrectly classified or are classified correctly but are on or inside the margin.

αi = C − µ∗
i ∀i = 1, ..., l (6.14)

To determine b∗, ξ∗i , we need to play with the 4th KKT condition. there are 2 types inequalities in primal
problem.

ξi ≥ 0 ∀i = 1, ..., l (6.15)

ξi ≥ 1− yi(w
Txi + b) ∀i = 1, ..., l (6.16)
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Hence, there are 2 types corresponding complementary slackness conditions:

αiξi = 0 ∀i = 1, ..., l (6.17)

µi[1− ξi − yi(w
Txi + b)] = 0 ∀i = 1, ..., l (6.18)

since C = αi + µi, then,

(C − µi)ξi = 0 ∀i = 1, ..., l (6.19)

µi[1− ξi − yi(w
Txi + b)] = 0 ∀i = 1, ..., l (6.20)

We observe that if 0 < µi < C, then ξi = 0 by eq (6.19), and then, we could solve for b by eq (6.20).

b∗ = average(yi −wTxi), (6.21)

where i is the one such that 0 < µi < C.

ξ∗ =

{
0, 0 ≤ µi < C

1− yi(w
Txi + b), µi = C

(6.22)

Then, one can predict the class of a new point x by

sign

 ∑
i,µi>0

µiyix
T
i x+ b∗

 . (6.23)

7 Kernel SVM (C-SVC)

We replace x with ϕ(x) and replace the inner product xT
i xj with k(xi,xj) in soft margin case, we get the primal

problem of kernel SVM with soft margin:

minw,b,ξ f(w, b) = C

l∑
i=1

ξi +
1

2
||w||2

s.t. ξi ≥ 0 ∀i = 1..., l

− yi(w
Tϕ(xi) + b) ≤ ξi − 1 ∀i = 1..., l

(7.1)

Similarly, We replace x with ϕ(x) and replace the inner product xT
i xj with k(xi,xj), we get the dual problem

of kernel SVM with soft margin:

maxµG(µ) =

l∑
i=1

µi −
1

2

l∑
i=1

l∑
j=1

µiyik(xi,xi)µjyj

s.t.

l∑
i=1

µiyi = 0 ∀i = 1, ..., l

µi ≥ 0 ∀i = 1, ..., l

µi ≤ C ∀i = 1, ..., l

(7.2)

Once the optimization problem is solved as what we did in linear SVM with soft margin case, the output of
decision function for a given sample x becomes:

f(x) = sign

(∑
i∈SV

yiµiK(xi,x) + b

)
(7.3)

We only need to sum over the support vectors because the dual variables µi = 0 for other samples.

8 Multi-Classification through SVM

One usually use one vs one to implement multi-classification. For k classes, we will train C2
k = k(k−1)

2 SVM
models and vote for final decision.
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Figure 9.1: ϵ-tube of SVR model

9 Support vector regression (ϵ-SVR and ν-SVR)

Vapnik (Vapnik et al. 1997) proposed a variant of the Huber loss function called the epsilon insensitive loss
function, defined by

Lϵ(y, ŷ) :=

{
0, if |y − ŷ| ≤ ϵ

|y − ŷ|, otherwise
(9.1)

This means that any point lying inside an ϵ-tube around the predictions is not penalized, as in Fig.9.1. The
corresponding objective function is

minw,b,C f(w, b) = C

l∑
i=1

Lϵ(yi, ŷi) +
1

2
||w||2 (9.2)

where ŷi = f(xi) = wTxi+b and C = 1
λ is a regularization constant. The objective is convex and unconstrained,

but not differentiable, because of the absolute value function in the objective function. One popular approach
is to formulate the problem as a constrained optimization problem as we used in soft margin. In particular, we
introduce slack variables to represent the degree to which each point lies outside the tube:

yi ≤ wTxi + b+ ϵ+ ξ+i (9.3)

yi ≥ wTxi + b− ϵ− ξ−i (9.4)

Then, we get the primal problem:

minw,b,ξ+,ξ− f(w, b) = C

l∑
i=1

(ξ+i + ξ−i ) +
1

2
||w||2

s.t. ξ+i ≥ 0 ∀i = 1..., l

ξ−i ≥ 0 ∀i = 1..., l

yi − (wTxi + b) ≤ ϵ+ ξ+i ∀i = 1..., l

yi − (wTxi + b) ≥ −ϵ− ξ−i ∀i = 1..., l

(9.5)

The Lagrangian function is:

L(w, b, ξ+, ξ−,α,β,γ,µ) = C

l∑
i=1

(ξ+i + ξ−i ) +
1

2
||w||2 −

l∑
i=1

αiξ
+
i −

l∑
i=1

βiξ
−
i (9.6)

+

l∑
i=1

γi[yi − (wTxi + b)− ϵ− ξ+i ]−
l∑

i=1

µi[yi − (wTxi + b) + ϵ+ ξ−i ] (9.7)
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The Lagrangian dual function is

G(α,β,γ,µ) = min(w,b,ξ)L(w, b, ξ+, ξ−α,µ,γ,µ) (9.8)

By the 3rd condition in KKT, note that (w, b, ξ+, ξ−) are primal variables, then, we have

∇wL = w −
l∑

i=1

γixi +

l∑
i=1

µixi = 0 (9.9)

∇bL =

l∑
i=1

(−γi + µi) = 0 (9.10)

∇ξ+i
L = C − αi − γi = 0 (9.11)

∇ξ−i
L = C − βi − µi = 0 (9.12)

plug them into dual function to satisfy it, we get dual function:

G(γ,µ) =
1

2
[

l∑
i,j

γi(x
T
i xj)γj +

l∑
i,j

µi(x
T
i xj)µj − 2

l∑
i,j

γi(x
T
i xj)µj ] +

l∑
i=1

(γi − µi)yi (9.13)

+

l∑
i,j

γi(x
T
i xj)γj +

l∑
i,j

µi(x
T
i xj)µj − 2

l∑
i,j

γi(x
T
i xj)µj (9.14)

=
3

2

l∑
i,j

γi(x
T
i xj)γj +

3

2

l∑
i,j

µi(x
T
i xj)µj − 3

l∑
i,j

γi(x
T
i xj)µj +

l∑
i=1

(γi − µi)yi. (9.15)

Hence, the dual problem is given by

maxµG(γ,µ) =
3

2

l∑
i,j

γi(x
T
i xj)γj +

3

2

l∑
i,j

µi(x
T
i xj)µj − 3

l∑
i,j

γi(x
T
i xj)µj +

l∑
i=1

(γi − µi)yi

s.t.

l∑
i=1

(µi − γi) = 0 ∀i = 1, ..., l

0 ≤ γi ≤ C ∀i = 1, ..., l

0 ≤ µi ≤ C ∀i = 1, ..., l

(9.16)

This is a quadratic function of 2l dual variables (γ,µ) with linear constrains, hence, one can use QP algorithm
to solve it. As we showed before that the optimal solution has the form

w∗ =
∑
i

(γi − µi)xi (9.17)

where γi−µi ≥ 0. Furthermore, it turns out that γ−µ vector is sparse, because we don’t care about the errors
which are smaller than ϵ. The xi for which γi − µi ≥ 0 are called the support vectors; these are points for
which the errors lie on or outside the ϵ tube. Once again, by the complementary slackness conditions, one can
determine b∗ as

αiξ
+
i = (C − γi)ξ

+
i = 0 i = 1, ..., l (9.18)

βiξ
−
i = (C − µi)ξ

−
i = 0 i = 1, ..., l (9.19)

γi[yi − (wTxi + b)− ϵ− ξ+i ] = 0 i = 1, ..., l (9.20)

µi[yi − (wTxi + b) + ϵ+ ξ−i ] = 0 i = 1, ..., l (9.21)

hence, b = yi − ϵ−wTxi for i such that 0 < γi < C and b = yi + ϵ−wTxi for i such that 0 < µi < C.

b∗ = mean
(
yi − ϵ−wTxi

)
+mean

(
yi + ϵ−wTxi

)
(9.22)

Once the model is trained, one can predict new point x using

sign
(
w∗Tx+ b∗

)
(9.23)
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plugging in the definition of w∗, we get

sign

(∑
i

(γi − µi)x
T
i x+ b∗

)
(9.24)

Finally, if we replace xT
i x with k(xi, x), we get a kernelized solution of kernel ϵ-SVR.

sign

(∑
i

(γi − µi)k(xi,x) + b∗

)
(9.25)

Remark: ν-SVR will be added later.
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