
SPHERICAL HARMONICS
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Abstract. In this report, we develop the basic theory of spherical harmonics including orthogonality, Legendre
polynomials, the decomposition of L2(Sd−1) and the applications. We start from the homogeneous polynomials

which is the foundation of spherical harmonics to develop the orthogonality of spherical harmonics. Then we

develop the relationship between spherical harmonics and Legendre polynomials. Meanwhile, we conclude that
the kernel F (ξ, η) can be represented in terms of the Legendre polynomials which is very useful for explicit

expansion of f ∈ L2(Sd−1). When we focus on the applications of spherical harmonics on the unit ball, we show

that all spherical harmonics form a complete basis of the Hilbert space L2(Sd−1). That is we could decompose
L2(Sd−1) into the direct sum of all Hn. We also discuss the the application of spherical harmonics on the

Dirichlet problem for the Laplace equation on the ball based on the decomposition of L2(Sd−1).

1. Introduction

The harmonic functions are solutions of the Laplace equation. They play a fundamental role in Analysis and
other areas of mathematics and in applications. The spherical harmonics are the traces of harmonic polynomials
on the sphere and are the analogue of the trigonometric system on the system. They play an equally important
role. In this paper, we develop the basic theory of spherical harmonics including orthogonality, Legendre
polynomials and the decomposition of L2(Sd−1). We first introduce important definitions and theorems of
Hilbert space which will be used in the last section. In the following section, we focus on the polynomial
solution of Laplace equation in 2 and 3 dimensions which will motivate discussion of the spherical harmonics
in high dimensions. Then we are ready to develop the main theory of spherical harmonics. We show that
all spherical harmonics form a complete basis of Hilbert space L2(Sd−1). Then we focus on the expansion of
f ∈ L2(Sd−1) which based on the decomposition of L2(Sd−1). For the convenience of application, we expansion
f in terms of kernel F (ξ, η) instead of the explicit expression of spherical harmonics. Much of the theory
developed of this paper references Hochstadt [1]. To find the development of the spherical harmonics that arise
in R3, one can look in almost any text on mathematical methods, electrodynamics, or quantum mechanics,
physical geodesy (see [3], [4]) The classical work by Müller [2] is also recommended for the readers who are
eager for extensive content on spherical harmonics.

2. Background

In this chapter, we will begin with important definitions and Theorems which will be used later.

2.1. Hilbert Space.

Definition 2.1. (1) In a normed space, a sequence {xn}∞n=0 is a Cauchy sequence if ∀ε > 0, ∃ an integer
N > 0 such that ‖xn − xm‖ < ε for all n,m ≥ N .

(2) A normed space is complete if every Cauchy sequence converges to an element in the space.
(3) A complete inner product space is a Hilbert space.
(4) An orthonormal set {φn}∞n=0 ⊂ H is complete if ∀f ∈ H, there exist scalars c1, c2, ... such that

(1) lim
n→∞

‖f −
n∑
k=0

ckφk‖ = 0.

Theorem 2.2. An orthonormal set {φn}∞n=0 ⊂ H is complete if and only if Parseval’s equality ‖f‖2 =∑
|(f, φn)|2 holds for each f ∈ H.

Definition 2.3. A set {φn}∞n=0 is closed if (f, φn) = 0 ∀n implies f = 0.

Theorem 2.4. The orthonormal set {φn}∞n=0 ⊂ H is complete if and only if it is closed.

Proof. (Sufficient) Let {φn}∞n=0 ⊂ H be a closed orthonormal set and f ∈ H. We need to show that

lim
n→∞

(
‖f‖2 −

n∑
k=0

(f, φk)2

)
= 0
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by theorem 2.2.
Define gn = f −

∑n
k=0(f, φk)φk, first show that {gn}∞n=0 is a Cauchy sequence. If n > m,

‖gn − gm‖2 = ‖
n∑

k=m+1

(f, φk)φk‖2

=
∑

k,l=m+1

(f, φk)(f, φl)(φk, φl)

=

n∑
k=m+1

(f, φk)2

since the series
∑∞
k=0(f, φk) converges,

∑n
k=m+1(f, φk)2 can be arbitrarily small for large enough n,m, then,

{gn}∞n=0 is a Cauchy sequence. Hence, there exist g ∈ H such that

(2) lim
n→∞

‖gn − g‖ = 0

by the completeness of H. Now fix j and taken n ∈ N such that for any n > j, By the Cauchy-Schwartz
inequality

|(g, φj)| = |(gn − g, φj)| ≤ ‖gn − g‖‖φj‖ = ‖gn − g‖.
Hence, we get

|(g, φj) ≤ lim
n→∞

‖gn − g‖ = 0

which implies that for any j, (g, φj) = 0. Since {φn}∞n=0 is closed, then, we have g = 0. Therefore,

lim
n→∞

(
‖f‖2 −

n∑
k=0

(f, φk)2

)
= lim
n→∞

‖gn‖2 = lim
n→∞

‖gn − g‖2 = 0.

(Necessary) Suppose {φn}∞n=0 is complete but not closed. Then there exists a nonzero function f such that
(f, φn) = 0 for every n. Then,

lim
n→∞

(
‖f‖2 −

n∑
k=0

(f, φk)2

)
= ‖f‖2 6= 0

Hence, by 2.2, {φn}∞n=0 is not complete which is a contradiction.

2.2. surface area of unit sphere in d dimension. We shall find the surface area of a unit sphere in d
dimension which will be used later. Let f(r) be any function of r =

√
x21 + ...+ x2d for which the integral

(3) Id =

∫ ∞
−∞

...

∫ ∞
−∞

f(r)dx1dx2...dxd

exists.
To perform the above integration we shall make use of the spherical symmetry of the function f(r). Let ωd
denote the surface area of a unit sphere. Then we can evaluate Id by integrating over spherical shells, so that

Id =

∫ ∞
0

∫
S(r)

f(r)dωdr

=

∫ ∞
0

f(r)ωd(r)dr

= wd

∫ ∞
0

f(r)rd−1dr

(4)

since the surface area of a sphere or radius r is ωdr
d−1. It follows that

ωd =

∫∞
−∞ ...

∫∞
−∞ f(r)dx1...dxd∫∞

0
f(r)rd−1dr

Since wd−1 is independent with the choice of f(r), in particular, we could choose f(r) = e−r
2

= e−(x
2
1+...+x

2
d)

we get

ωd =
[
∫∞
−∞ e−x

2

dx]d∫∞
0
e−r2rd−1dr

=
[
√
π]d

1
2Γ(d/2)

=
2πd/2

Γ(d/2)
.

3. Spherical Harmonic in 3−dimension

In this chapter, we will find the solutions of Laplace equation in 2 and 3 dimensions to motivate the set up
of spherical harmonics.
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3.1. 2-D Laplace equation. The Laplace operator in 2−dimension is given by

∆2 =
∂2

∂x2
+

∂2

∂y2

The relationship between Cartesian coordinate and polar coordinate is given by

x = rcosφ, y = rsinφ.

Now we derive the Laplace operator in polar coordinate.

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ

Finally, we get the Laplace operator in polar coordinate as follows:

(5) ∆2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2

Thus, we get the Laplace equation

∆2Φ =
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂φ2
= 0

We assume the solution of this equation has the form Φ(r, φ) = X(r)Y (φ). Inserting this solution to the above
equation we get:

Y
∂2X

∂r2
+ Y

1

r

∂X

∂r
+X

1

r2
∂2Y

∂φ2
= 0

Multiplying by r2/XY and rearranging,

r2

X

∂2X

∂r2
+

r

X

∂X

∂r
= − 1

Y

∂2Y

∂φ2

Observe that the left hand side is the function of r alone and the right hand side is the function of φ alone, in
order to make the above equality holds, both sides of the equation are the same constant. Denote −λ, we get:

1

Y

∂2Y

∂φ2
= λ

r2

X

∂2X

∂r2
+

r

X

∂X

∂r
= −λ

The linearly independent solutions of the second order ODE Y
′′

= λY are

Y (φ) =


e
√
λφ, e−

√
λφ if λ > 0,

1, φ if λ = 0,

sin(
√
|λ|φ), cos(

√
|λ|φ) if λ < 0

Since (r0, φ0) represents the same point as (r0, φ0 + 2kπ) for any k ∈ Z, Y (φ) is a periodic function with
period 2π in this problem. Thus, the linearly independent solutions of this problem are

1, sin(
√
λφ), cos(

√
λφ)

where λ is a non-negative integers. Then, we could replace λ with −m2 then, the solutions are

1, Y1,n = cos(nφ), Y2,m = sin(mφ)

3.2. 3-D Laplace equation. The Laplace operator in 3− dimension is given by

∆3 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Let us first derive the Laplace operator in spherical coordinates.
Since

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

Using chain rule,we get

(6) ∆3 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
We could derive the spherical harmonics in 3 − D through solving Laplace equation ∆3Φ = 0 in spherical

coordinates via separating variables.
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Assume the solution has the form Φ(r, θ, φ) = X(r)Y (θ, φ). Then, we insert this solution into the Laplace
equation (6), we get

(7) ∆3 = Y (θ, φ)
1

r2
∂

∂r

(
r2
∂X(r)

∂r

)
+X(r)

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂Y (θ, φ)

∂θ

)
+

1

sin2 θ

∂2Y (θ, φ)

∂φ2

]
= 0

Multiplying by r2

X(r)Y (θ,φ) and rearranging,

1

X

∂

∂r

(
r2
∂X(r)

∂r

)
= − 1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y (θ, φ)

∂θ

)
+

1

sin2 θ

∂2Y (θ, φ)

∂φ2

]
Notice that the right hand side is a function of r and the left hand side is a function of θ and φ, in order to let
this equality holds, both sides of the above equation must be the same constant, denote −λ.It follows that

(8)

[
1

sin θ

∂

∂θ

(
sin θ

∂Y (θ, φ)

∂θ

)
+

1

sin2 θ

∂2Y (θ, φ)

∂φ2

]
= λY (θ, φ)

It turns out that the Y ′s which satisfy this equation are actually spherical harmonics. Observe the above
equation, we see that the Y ′s are eigenfunctions of the angular part of the Laplace operator. In the following
sections we will prove that the functions Y ′s form a complete set over the unit sphere, each Y is a homogeneous
polynomial restricted to the unit sphere, and these polynomials satisfy the Laplace equation.

4. Spherical Harmonic in d− dimension

Definition 4.1. A polynomial Hn(x1, x2, ..., xd) is homogeneous of degree n in d variables x1, x2, ..., xd if

(9) Hn(tx1, tx2, ..., txd) = tnHn(x1, ..., xd)

Definition 4.2. A polynomial Hn of degree n in d variables x1, x2, ..., xd is harmonic if ∆Hn = 0, where

∆ =
∑d
i=1

∂2

∂x2
i

Definition 4.3. A spherical harmonic of degree n, denoted Sn(ξ), is a harmonic homogeneous polynomial of
degree n in d variables restricted to the unit (d − 1) − Sphere. That is, Sn = Hn|Sd−1 , Sn : Sd−1 → R, given
by Sn(ξ) = Hn(ξ) for every ξ ∈ Sd−1 for some harmonic homogeneous polynomial Hn.

4.1. The number of spherical harmonics. We first find the number of linearly independent homogeneous
polynomials.

Lemma 4.4. If K(d, n) denotes the number of linearly independent homogeneous polynomials of degree n in d
variables, then

(10) K(d, n) =
(d+ n− 1)!

n!(d− 1)!

Proof. We can expand Hn(x1, x2, ..., xd) as a polynomial in variable xd, so that

(11) Hn(x1, x2, ..., xd) =

n∑
j=0

xjdAn−j(x1, x2, ..., xd−1)

where An−j(x1, x2, ..., xd−1) denotes the corresponding homogeneous polynomial of degree n − j in d − 1
variables. By the assumption, we know for each An−j there are K(d− 1, n− j) linearly independent choices so
that K(d, n) satisfies

(12) K(d, n) =

n∑
j=0

K(d− 1, n− j) =

n∑
j=0

K(d− 1, j)

We shall solve it by the method of generating functions. Let

(13) M(d) :=

∞∑
n=0

rnK(d, n)
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If we substitute from (12) in (13) and interchange the n and j summations, we obtain

M(d) =

∞∑
n=0

n∑
j=0

rnK(d− 1, j)

=

∞∑
j=0

K(d− 1, j)

∞∑
n=j

rn

=
1

1− r

∞∑
j=0

rjK(d− 1, j)

=
M(d− 1)

1− r

(14)

From the recursion formula above, we deduce that

M(d) =
M(1)

(1− r)d−1

For d = 1, clearly, K(1, n) = 1, since Hn(x1) = cxn1 , so that M(1) = 1
1−r and

M(d) = (1− r)−d =

∞∑
n=0

(d+ n− 1)!

n!(p− 1)!
rn

Comparing these two expressions of M(d), since r, r2,...,rn,... are linearly independent, we obtain

K(d, n) =
(d+ n− 1)!

n!(d− 1)!

Now, Let’s find the number of linearly independent homogeneous harmonic polynomials which is the number
of linearly independent spherical harmonics.

Theorem 4.5. If N(d, n) denotes the number of linearly independent homogeneous harmonic polynomials of
degree n in d variables, then

N(d, n) =
2n+ d− 2

n

(
n+ d− 3

n− 1

)
Proof. We can decompose the operator ∆d into two operators.

∆d =
∂2

∂x2d
+ ∆d−1

where ∆d−1 denotes the d− 1 dimensional Laplace operator acting on functions of x1, x2, ...,xd−1. Then,

∆dHn = ∆d(

n∑
j=0

xjdAn−j(x1.x2, ..., xd))

=

n∑
j=2

j(j − 1)xj−2d An−j +

n∑
j=0

xjd∆d−1An−j

=

n∑
j=0

xjd[(j + 1)(j + 2)An−j−2 + ∆d−1An−j ]

= 0

(15)

In the above A−1 = A−2 = 0. Since 1,xd, x
2
d,...,x

n
d are linearly independent, we require that

∆d−1An + 2An−2 = 0

∆d−1An−1 + 6An−3 = 0

∆d−1An−2 + 12An−4 = 0

...

∆d−1A2 + n(n− 1)A0 = 0

∆d−1A1 = 0

∆d−1A0 = 0

From the above we see that once An and An−1 are selected all remaining An−j are determined recursively.
From 4.4 we know that An can be written as the linear combination of K(d− 1, n) polynomials, hence, we need
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K(d − 1, n) coefficients to determine An, Similarly, we need K(d − 1, n − 1) coefficients to determine An−1.
Hence, we can select An and An−1 in K(d− 1, n) +K(d− 1, n− 1) ways so that

N(d, n) = K(d− 1, n) +K(d− 1, n− 1)

=

(
n+ d− 2

n

)
+

(
n+ d− 3

n− 1

)
=
n+ d− 2

n

(
n+ d− 3

n− 1

)
+

(
n+ d− 3

n− 1

)
=

2n+ d− 2

n

(
n+ d− 3

n− 1

)
(16)

For example, for d = 3, we find that

N(3, n) = 2n+ 1

Using spherical coordinates, these (2n+ 1) functions are given by

rnPmn (cosθ)eimφ,m = −n,−n+ 1, ..., n− 1, n

In general, we write

Hn(X) = Hn(rξ) = rnSn(ξ).

where X = (x1, x2, ...xd) and ξ is the unit vector ξ = (ξ1, ξ2, ..., ξd), we refer to Sn(ξ) as a spherical harmonic.

Theorem 4.6. (Orthogonality of Spherical Harmonics) Let Sn(ξ),Sm(ξ) be two spherical harmonics,
then,

(17)

∫
Sd−1

Sn(ξ)Sm(ξ)dωd = 0 if n 6= m

That is, spherical harmonics of different degrees are orthogonal over the sphere.

Proof. Let Hn(X) denote the homogeneous polynomial of degree n corresponding to Sn(ξ). Then,

Hn(tX) = tnHn(X)

Differentiation of the above with respect to t yields

(18)
d

dt
Hn(tX) = ntn−1Hn(X)

But

(19)
d

dt
Hn(tX) =

d∑
i=1

∂Hn(tX)

∂xi

dtxi
dt

In particular for t = 1 we find

(20)
∑ ∂Hn(X)

∂xi
xi = nHn(X)

Now let X be such that |X| = 1 so that X = ξ, and the above equation reduces to

(21)

d∑
i=1

∂Sn(ξ)

∂xii
ξi = nSn(ξ)

Let ν denote the exterior normal to the unit sphere ξ = 1. It follows that

(22)
∂Sn(ξ)

∂ν
= ξ∇Sn(ξ) =

d∑
i=1

∇Sn(ξ)

∂ξi
ξi = nSn(ξ)

Using divergence theorem in d dimensions we have

0 =

∫
|X|≤1

[Hn(X)∆dHk(X)−Hk(X)∆dHn(X)]dx1dx2...dxd

=

∫
|ξ|=1

[Sn(ξ)
∂Sk(ξ)

∂ν
− Sk(ξ)

∂Sn(ξ)

ν
]dωd

= (k − n)

∫
|ξ|=1

Sn(ξ)Sk(ξ)dωd

(23)

and for n 6= k the result follows.
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By the theorem above 4.5 and 4.6, we could conclude that {Sn,j(ξ)}N(d,n)
j=1

∞
n=0 forms an orthonormal set.

Suppose {Sn(ξ)} is a set of N(d, n) linearly independent real spherical harmonics of degree n. By the Gram-
Schmidt process we can construct an orthonormal set

Sn,1(ξ), Sn,2(ξ), ..., Sn,N(d,n)(ξ).

By 4.6, we know all spherical harmonics with different degrees are orthogonal over the sphere. Combine these

two results, we get that {Sn,j(ξ)}N(d,n)
j=1

∞
n=0 forms an orthonormal set. In the following, we will prove that

{Sn,j(ξ)}N(d,n)
j=1

∞
n=0 is closed. But, before that, we first show that under the coordinate rotation, spherical

harmonic of degree n is still a spherical harmonic. Suppose {Sn(ξ)} is a set of N(d, n) orthonormal real
spherical harmonics of degree n. Then we have,

(24)

∫
|ξ|=1

Sn,j(ξ)Sn,k(ξ)dωd = δj,k

Let A denote an orthogonal matrix that represents a rotation of the coordinate system. Since the integration
is taken over the entire sphere, the orthonormal set of spherical harmonics remains orthonormal in a rotated
coordinate frame. It follows that

(25)

∫
|ξ|=1

Sn,j(Aξ)Sn,k(Aξ)dωd = δj,k

for all orthogonal matrices(ATA = I).

Proposition 4.7. If Sn(ξ) is a spherical harmonic of degree n, then S
′

n(ξ) = Sn(Aξ) is also a spherical
harmonic of degree n, for any rotation matrix A.

Proof. Let Sn(ξ) be a spherical harmonic o degree n. Then there exists a harmonic homogeneous polynomial

Hn(X) of degree n such that Sn = Hn|Sd−1 . Denote H
′

n(X) = Hn(AX). We claim that S
′

n = H
′

n|Sd−1 . Too see

this, first notice that H
′

n(X) is a polynomial in x1, ..., xd. Indeed, H
′

n(X) = Hn(AX) is a linear combination

of powers of the
∑d
j=1Aijxj and thus a linear combination of powers of the xj . Then, notice that H

′

n is
homogeneous of degree n,

H
′

n(tX) = Hn(tAX) = tnHn(AX) = tnH
′

n(X)

Finally, notice that H
′

n is harmonic.Restricting H
′

n to the unit sphere thus gives a spherical harmonic of degree

n, that is S
′

n(ξ).

Remark 4.8. If let Hn denote the vector space of all spherical harmonics of degree n in d dimension. The
above result says that Hn is invariant under the coordinate rotation.

We now show the function F (ξ, η) which is known as the kernel of the orthogonal projector

(26) F (ξ, η) =

N(d,n)∑
j=1

Sn,j(ξ)Sn,j(η)

is invariant under the coordinate rotation. As we shall see later this function has similar properties and plays a
similar role as doesKn(x, y), defined by the Christoffel-Darboux formula in the theory of orthogonal polynomials.

Since the set {Sn,j(ξ)}N(d,n)
j=1 , is a maximal linearly independent set of spherical harmonics of degree n, it forms

a basis for all such functions. From the above proposition, we know Sn,j(Aξ) is a spherical harmonic of degree
n, It follows that

(27) Sn,j(Aξ) =

N(d,n)∑
l=1

Cl,jSn,l(ξ)

By inserting (27) in (25) and using (24) we find that

(28)

N(d,n)∑
l=1

Cl,jCn,l = δj,k
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(28) expresses the fact that the matrix C = (ci,j) defined in (27) is also orthogonal.
Using (27) and (28) we have

F (Aξ,Aη) =

N(d,n)∑
j=1

N(d,n)∑
l=1

Ct,jSn,l(ξ)

N(d,n)∑
m=1

Cm,jSn,m(η)


=

N(d,n)∑
j=1

Sn,j(ξ)Sn,j(η)

= F (ξ, η)

(29)

This result expresses the fact that F (ξ, η) is invariant under rotations of the coordinate system. By using this
property, we will prove that F (ξ, η) is a function of the inner product of ξ and η. Let’s denote the inner product
between two vectors by

(ξ, η) =

d∑
i=1

ξiηi

and clearly for a rotation A, the inner product is invariant,

(Aξ,Aη) = (ξ, ATAη) = (ξ, η)

where AT is the transpose of A. For a rotation ATA = I

Lemma 4.9. The function F (ξ, η) defined by F (ξ, η) =
∑N(d,n)
j=1 Sn,j(ξ)Sn,j(η) is a function of (ξ, η) only.

That is

F (ξ, η) = φ((ξ, η))

Proof. From the above, we know the inner product is invariant under coordinate rotation and F (ξ, η) is
invariant, too. We shall select our coordinate system in a special way. This can be done without loss of
generality by a suitable rotation. There is a rotation A1 such that

A1η = η1, A1ξ = ξ1

where

η1 = (1, 0, 0, ..., 0), ξ1 = (t,
√

1− t2, 0, ..., 0)

so that (ξ1, η1) = t. Since F (ξ, η) is invariant under rotations, F (ξ, η) = F (ξ1, η1, ). Hence, F (ξ, η) will be a

polynomial in the two variables t and
√

1− t2, that is

F (ξ, η) = P (t,
√

1− t2)

But there is certainly a rotation A such that

Aη1 = η1, Aξ1 = (t,−
√

1− t2, 0, ..., 0)

so that

F (Aξ1, Aη1) = F (ξ, η)

then, F (ξ, η) will be a polynomial in the two variables t and −
√

1− t2, that is

F (ξ, η) = P (t,−
√

1− t2)

which means that

P (t,−
√

1− t2) = P (t,
√

1− t2)

Then P is a polynomial in t and 1− t2, which is a polynomial in t so that

F (ξ, η) = φ(t) = φ((ξ, η))

5. Legendre polynomials

In this chapter, we will develop the relationship between spherical harmonics and Legendre polynomials
as well as the kernel F (ξ, η) of the orthogonal projector onto Hn can be represented in terms of nth degree
Legendre polynomial.

Theorem 5.1. Consider the homogeneous and harmonic polynomial Ln(X) characterized by the following
properties.

(1) Without loss of generality we let η = (1, 0, ..., 0). Then Ln(η) = 1
(2) Let A′ be any rotation leaving η fixed, that is A′η = η. Then Ln(A′X) = Ln(X).

The corresponding spherical harmonic Ln(ξ) is uniquely defined by these properties and is a polynomial
in t = (ξ, η).
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Proof. For any ξ ∈ Sd−1, let r =
√
x21 + x22 + ...+ x2d, and ξ′ be a unit vector orthogonal to η that is (ξ′, η) = 0.

We can express ξ in the form

ξ = tη +
√

1− t2ξ′

for suitable t and ξ′. Note that t = (ξ, η). We now expand Ln(X) in the form

Ln(X) =

n∑
j=0

xjdAn−j(x1, x2, ..., xd−1)

Let A′ be a rotation matrix as described in property (2) in the statement of the theorem. Then,A′ is a linear
mapping:

A′ : x1, x2..., xd → x1, x
′

2, ..., x
′

d

In view of the fact that the transformation A′ leaves Ln(X) invariant, we get

0 = Ln(x)− Ln(Rx) =

n∑
j=0

xjdAn−j(x1, x2, ..., xd−1)

By the linear independence of {xjd}dj=0, it must leave all An−j(x1, ..., xd−1) invariant. In other words, the An−j
are invariant under all such rotations and it follows that An−j depends only on the radius r, that is,

An−j(x1, ..., xd−1) = Cn−j(x
2
1 + x22 + ...+ x2d−1)

n−j
2

so that Cn−j = 0 for all odd n − j. Otherwise these would not be polynomials. Hence either An = 0 if n is
odd or An−1 = 0 if n is even. We had seen earlier that the specifications of An and An−1 uniquely determines
Ln(X) in theorem 4.5. In this case the specification of a single constant, either Cn or Cn−1 depending on the
parity of n, determines Ln(X). We have now

Ln(ξ) =

n∑
j=0

′tj(1− t2)
n−j
2 Cn−j

where
∑′

denotes that we sum only over such values of j for which n− j is even. By property 1 with t = 1

Ln(η) = C0 = 1

Thus, the single remaining constant is specified, and Ln(X) uniquely determined as in theorem 4.5. Hence, the
corresponding Ln(ξ) is uniquely determined.

Remark 5.2. The polynomial defined in the preceding theorem will be defined as the Legendre polynomial of
degree n in d dimensions. We also could get the following properties of Legendre polynomials.

(1) 1 = Ln(η) = Pn((η, η)) = Pn(1)
(2) From the homogeneity of Legendre polynomial and (1), we get Pn(−1) = (−1)nPn(1) = (−1)n

Now we are equipped to prove the Addition Theorem for Legendre Polynomials which basically says that
every Legendre polynomial can be represented in terms of spherical harmonics.

Theorem 5.3. (Addition Theorem for Legendre Polynomial)

Let {Sn,j}N(d,n)
j=1 be the orthonormal set of spherical harmonics of degree n. Then the Legendre polynomial of

degree n, Pn can be written as

(30) Pn((ξ, η)) =
ωd−1
N(d, n)

N(d,n)∑
j=1

Sn,j(ξ)Sn,j(η).

Proof. We now need the function F (ξ, η) defined in (26). Consider the normalized function F (ξ,η)
F (η,η) , we could

check that this function satisfies the properties in theorem5.1: If A′ is any rotation leaving η fixed we have

F (A′ξ, A′η) = F (A′ξ, η) = F (ξ, η)

Hence, by the theorem5.1, the normalized function F (ξ,η)
F (η,η) is a uniquely determined Legendre polynomial denote

Pn, i.e.

(31) F (ξ, η) = F (η, η)Pn((ξ, η))
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To evaluate F (η, η), we integrate F (η, η) over the surface of the unit sphere in d dimensions.∫
|η|=1

F (η, η)dωd−1 =

∫
|η|=1

N(d,n)∑
j=1

S2
n,j(η)dωd

=

N(d,n)∑
j=1

∫
|η|=1

S2
n,j(η)dωd−1

= N(d, n)

The last equality holds since {Sn,j} is orthonormal set. Then, we get

F (η, η) =
N(d, n)

ωd−1

Hence, we get

Pn((ξ, η)) =
ωd−1
N(d, n)

F (ξ, η)

The result follows.

Remark 5.4. From the equation (31), we see that the kernel F (ξ, η) of the orthogonal projector onto Hn can
be represented in terms of nth degree Legendre polynomial.

In the above theorem, we showed that a given Legendre polynomial with degree n can be expressed in terms
of spherical harmonics. In the following, we will show that every spherical harmonic can be represented in terms
of Legendre polynomial.

Lemma 5.5. Let {Sn,j(η)} be a set of k ≤ N(d, n) linearly independent spherical harmonics. Then there exists
a set of k unit vectors {ηi} such that the following k × k determinant does not vanish.

|Sn,j(ηi)| 6= 0

Proof. We can certainly find η1 so that Sn,1(η1) 6= 0. Then we consider the spherical harmonic defined by∣∣∣∣Sn,1(η1) Sn,1(ξ)
Sn,2(η1) Sn,2(ξ)

∣∣∣∣.
Since Sn,1 and Sn,2 are linearly independent, the above does not vanish identically and we select η2 so that it
does not vanish. In a similar fashion we can select η3, η4,...,ηk, by going on to higher determinants∣∣∣∣∣∣∣∣

Sn,1(η1) Sn,2(ξ) ... Sn,n(ξ)
Sn,2(η1) Sn,2(ξ) ... Sn,n(ξ)
. . .

Sn,n(η1) Sn,2(ξ) ... Sn,n(ξ)

∣∣∣∣∣∣∣∣
Then, the result follows.

By means of the above lemma we can prove the following theorem. The key point of the theorem is that
every spherical harmonic can be represented in terms of the basic Legendre polynomials.

Theorem 5.6. Every spherical harmonic Sn(ξ) can be represented in the form

Sn(ξ) =

N(d,n)∑
k=1

AkPn((ξ, ηk))

where Pn(t) is the Legendre polynomial of degree n in d dimensions and the ηk are a set of suitable unit vectors.

Proof. According to the previous lemma we can select {ηi} so that |Sn,j(ηi)| 6= 0 Then the linear equation
system

(32) Pn((ξ, ηk)) =
ωd−1
N(d, n)

N(d,n)∑
j=1

Sn,j(ξ)Sn,j(ηk) k = 1, 2, ..., N(d, n)

is invertible and

Sn,j(ξ) =

N(d,n)∑
k=1

AkPn((ξ, ηk)), j = 1, 2, ..., N(d, n).

But every spherical harmonic of degree n can be expressed as a linear combination of Sn,j , j = 1, 2, ..., N(d, n).
Hence,

Sn(ξ) =

N(d,n)∑
k=1

bjSn,j(ξ)
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where bj =
∫
|ξ|=1

Sn(ξ)Sn,j(ξ)dωd.

Proposition 5.7. For every spherical harmonic Sn(ξ) of degree n, we have

(33) Sn(ξ) =
N(d, n)

ωd

∫
|η|=1

Sn(η)Pn((ξ, η))dωd

Proof. Let

Sn(ξ) =

N(d,n)∑
k=1

bjSn,j(ξ)

Using (32), the right hand side of (33) can be written as

N(d,n)∑
j=1

Sn,j(ξ)

N(d,n)∑
i=1

bi

∫
|η|=1

Sn,j(η)Sn,i(η)dωd =

N(d,n)∑
k=1

bjSn,j(ξ) = Sn(ξ).

Up to now, we know that the spherical harmonics and Legendre polynomials could be expressed by each
other.

6. Applications to Boundary Value Problems

In this section, we will first prove that all spherical harmonics {Sn,j(ξ)} where j = 1, 2, ..., N(d, n), and
n = 0, 1, 2, ... form a complete basis for the Hilbert space L2(Sd−1). Then, We can develop certain expansion
theorems in connection with the orthonormal set. In the end, we will see an application of spherical harmonics
to the Dirichlet boundary condition problems of Laplace equation on a ball.

Definition 6.1. we let Hn denote the vector space of all spherical harmonics of degree n in d dimension. i.e.
Hn is the collection of all homogeneous harmonic polynomials of degree n restricted to the sphere Sd−1.

Definition 6.2. L2(Sd−1) := {f(ξ) : Sd−1 → R such that
∫
Sd−1 |f(ξ)|2dωd <∞}.

Theorem 6.3. L2(Sd−1) is a Hilbert space with inner product defined by (f, g) =
∫
|ξ|=1

f(ξ)g(ξ)dωd.

we omit the proof of this theorem.

In the following, we will show that L2(Sd−1) = H0 ⊕H1 ⊕H2 ⊕ ...⊕Hn ⊕ ... which we based on to develop
the expansion.

Theorem 6.4. Let f(ξ) be a real continuous function on |ξ| = 1. If (f(ξ), Sn,j(ξ)) = 0 for all spherical
harmonics in {Sn,j(ξ)} then f(ξ) vanishes identically.

Proof. Without loss of generality we can assume that there exists an η such that f(η) > 0. By the continuity
of f(ξ) there exists a neighborhood of ξ defined by τ ≤ (ξ, η) ≤ 1 such that f(ξ) ≥ a > 0 for all ξ in that
neighborhood.
Consider the function

φ(t) = 1− (1− t)2

(1− τ)2
τ ≤ t ≤ 1

φ(t) = 0, −1 ≤ t ≤ τ

There exists then a positive constant b such that∫
|ξ|=1

f(ξ)φ((ξ, η))dωd ≥ b > 0.

Using the Weierstrass approximation theorem we can construct a polynomial p(t) so that

|φ(t)− p(t)| ≤ ε, −1 ≤ t ≤ 1.

It follows that if |f(ξ)| ≤M , then

|
∫
|ξ|≤1

f(ξ)[φ((ξ, η))− p((ξ, η))]dωd| ≤Mωdε

and ∫
|ξ|=1

f(ξ)p((ξ, η))dωd ≥ b−Mωdε > 0

for sufficiently small ε. But using the completeness properties of the Legendre polynomials we have

p(t) =

n∑
k=0

AkPk(t)
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so that ∫
|ξ|=1

f(ξ)

n∑
k=0

AkPk((ξ, η))dωd = 0

by hypothesis. But (1) and (2) contradict one another. Hence f(ξ) = 0.

From the definition 4.3, we know {Sn,j(ξ)}N(d,n)
j=1

∞
n=0 is a closed set, and by the theorem 2.4, we get the conclusion

that {Sn,j(ξ)}N(d,n)
j=1

∞
n=0 forms a closed orthonormal set. In the following, I will briefly state the idea to extend

the conclusion in 6.4 to L2(Sd−1), then, we could say that {Sn,j(ξ)}N(d,n)
j=1

∞
n=0 forms a complete orthonormal

basis of Hilbert space L2(Sd−1) or we could say that L2(Sd−1) = H0 ⊕H1 ⊕H2 ⊕ ...⊕Hn ⊕ ....

Let f(ξ) ∈ L2(Sd−1), {Sn,j(ξ)}N(d,n)
j=1

∞
n=0 be the complete orthonormal set of L2(Sd−1), then, we have the

following expansion

f(ξ) =

∞∑
n=0

N(d,n)∑
j=1

Cn,jSn,j(ξ)

with certain coefficients Cn,j that we will derive later. Now extending the above theorem to all functions
f(ξ) ∈ L2(Sd−1).
First, let me state a certain fact about square-integrable functions without proof. For every ε one can find a
continuous function g(ξ) so that ∫

|ξ|=1

|f(ξ)− g(ξ)|2dωd ≤ ε.

With this and the theorem 6.4 one can show that

lim
K→∞

∫
|ξ|=1

|f(ξ)−
K∑
n=0

N(d,n)∑
j=1

Cn,jSn,j(ξ)|2dωd = 0

then the same conclusion for all such functions f(ξ) ∈ L2(Sd−1) follows.
Now, let’s To obtain the coefficient Cn,j ,∫

|ξ|=1

f(ξ)Sn,j(ξ)dωd =

∞∑
m=0

N(d,m)∑
k

∫
|ξ|=1

Cm,kSm,k(ξ)Sn,j(ξ)dωd

=

∞∑
m=0

N(d,m)∑
k

Cm,k

∫
|ξ|=1

Sm,k(ξ)Sn,j(ξ)dωd

= Cn,j

since {Sn,j(ξ)}N(d,n)
j=1

∞
n=0 is orthormonal.

Using the conclusion we get above, now we can develop expansions. by the addition theorem of Legendre
polynomial 5.3, we could write the expansion of f as:

f(ξ) =

∞∑
n=0

N(d,n)∑
j=1

Cn,jSn,j(ξ)

=

∞∑
n=0

N(d,n)∑
j=1

(∫
|η|=1

f(η)Sn,j(η)dωd

)
Sn,j(ξ)

=

∞∑
n=0

N(d,n)∑
j=1

(∫
|η|=1

f(η)Sn,j(η)Sn,j(ξ)dωd

)

=

∞∑
n=0

∫
|η|=1

f(η)

N(d,n)∑
j=1

Sn,j(η)Sn,j(ξ)

 dωd

=

∞∑
n=0

∫
|η|=1

f(η)Pn((ξ, η))dωd

=

∞∑
n=0

∫
|η|=1

f(η)F (ξ, η)dωd

Now, we see that when we compute the expansion of f , we only need the kernel F (ξ, η) instead of the explicit
expression of basis. Hence, we see that the function F (ξ, η) defined in (26) has similar properties and plays a
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similar role as doesKn(x, y), defined by the Christoffel-Darboux formula in the theory of orthogonal polynomials.
Now let’s see the application on boundary value problems of Laplace equation on a ball.
We seek a harmonic function V satisfying a boundary condition on the unit sphere. That is

(34) ∆dV = 0

with the boundary condition V = f(ξ) on {|r| = 1}.
Using the above conclusion, we see that

(35) V =
∑
n,j

rnCn,jSn,j(ξ)

must satisfy the boundary condition and by construction must also be harmonic. Hence (35) is the solution of
(34).
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