
Variational Autoencoder

Chunyan Li
Math Department

University of South Carolina

December 2020

1 Introduction

In this chapter, we will give a tutorial for VAE that includes the following sections.

• Motivation of the construction of a VAE through the theory of probability and Bayes’ Rule

• The derivation of loss function which is the lower bound of likelihood p(x) of the observations.

• Maximize the lower bound via Stochastic gradient descent(SGD). (need reparameterization trick to pass
the gradient w.r.t φ to the expectation.)

• MC(Monte Carlo) Method to approximate the expectation.

• Use neural networks for the probabilistic encoder and decoder.

• After training the VAE, how to find the latent representation/lower dimensional representation for any
given new data which is assumed sampled from the same distribution with the training set.

• For the well trained VAE model, for a fixed given hidden variable, no many how many times you sampling,
the decoder gives the same output. ????????

•

2 Motivation of the construction of a VAE

Consider the data set X = [x1, ...,xn]T with size n by k where n is the number of samples and k is the number
of features.

Input
Latent

representation
recovery

Posterior distribution Conditional distribution

Inference model Generative model

Bayesian’s rule:

1

From the schematic diagram, we could see the following: we assume each xi ∈ Rk is sampled from dis-
tribution p(x), then for the given xi , we could determine the latent variable zi ∈ Rp where p << k by the
posterior (density) distribution p(z|x = xi) , then for each given zi , we could recover xi by conditional (den-
sity)distribution p(x|z = zi). Hence, in this case, the posterior (density) distribution p(z|x) serves as an encoder
and the conditional (density) distribution p(x|z) serves as a decoder. Then, using neural network to learn these
two distributions gives us the variational autoencoder where we use another simple distribution qφ(z|x) to ap-
proximate the posterior distribution pθ(z|x) which is intractable in most of time. We call qφ(z|x) inference
model or recognition model or an encoder or an approximated posterior. With parameter φ we indicate the
parameters of this inference model, also called variational parameters. We optimize the variational parameters
φ such that:

qφ(z|x) ≈ pθ(z|x) (1)

As we will explain, this approximation to the posterior will help us optimize the marginal likelihood of x.

2.1 intractabilities[1]

The data likelihood

pθ(x) =

∫
pθ(x|z)pθ(z)dz (2)

It is intractable to compute pθ(x|z) for every z! This integral is a high dimensional integration which has no
analytic form or an efficient estimator.
Posterior density

pθ(z|x) = pθ(x|z)pθ(z)/pθ(x) (3)

It is intractable due to the intractability of likelihood and vice versa. The marginal probability of data under
the model is typically intractable. This is due to the integral pθ(x) =

∫
pθ(x, z)dz for computing the marginal

likelihood not having an analytic solution or efficient estimator. Due to this intractability, we can not differen-
tiate it w.r.t its parameters and optimize it.
The intractablity of pθ(x), is related to the intractability of the posterior distribution pθ(z|x). Note that the
joint distribution pθ(x, z)is efficient to compute, and that the densities are related through the basic identity
(Bayesian’s rule):

pθ(z|x) =
pθ(x, z)

pθ(x)
(4)

Since pθ(x, z) is tractable to compute, a tractable marginal likelihood pθ(x) leads to a tractable posterior pθ(z|x)
and vice versa. Both are intractable in VAE.

3 The derivation of loss function/Evidence lower bound objective
(ELBO)

3.1 The derivation of loss function

The marginal likelihood is composed of a sum over the marginal likelihoods of individual data points. That is,

logpθ(x1,x2, ...,xn) =

n∑
i=1

logpθ(xi) (5)

The likelihood of one sample point xi is logpθ(xi). We would like to maximize the log-likelihood of the data.
But the data likelihood is intractable which make the posterior is also intractable, so one can play a trick to
address this issue. That is to approximate the posterior by a tractable distribution. Then one can use KL
divergence to measure how close these two distributions, then, we have

DKL(qφ(z|x)||pθ(z|x)) = Ez∼q[logqφ(z|x)− logpθ(z|x)]

= Ez∼q[logqφ(z|x)]− Ez∼q[log
pθ(x|z)pθ(z)

pθ(x)
]

= Ez∼q[logqφ(z|x)]− Ez∼q[logpθ(x|z)pθ(z)] + Ez∼q[logpθ(x)]

= Ez∼q[logqφ(z|x)]− Ez∼q[logpθ(x|z)pθ(z)] + logpθ(x)

Hence, one can write the likelihood in the following expression:

logpθ(xi) = Ez∼q[logpθ(xi|z)pθ(z)]− Ez∼q[logqφ(z|xi)] +DKL(qφ(z|xi)||pθ(z|xi)) (6)

2

Now, let’s look at the equation (6), since DKL ≥ 0, we get the lower bound of the likelihood, also called the
variational lower bound or the evidence lower bound, which is denoted by L(θ, φ,xi).

L(θ, φ,xi) = logpθ(xi)−DKL(qφ(z|xi)||pθ(z|xi)) [(7)

= Ez∼q[logpθ(xi|z)pθ(z)]− Ez∼q[logqφ(z|xi)] [(8)

In order to maximize the likelihood and minimize the LK divergence DKL(qφ(z|xi)||pθ(z|xi)), we could maximize
the lower bound L(θ, φ,xi). We could rewrite the lower bound expression in the following way:

L(θ, φ,xi) = Ez∼q[logpθ(xi|z)pθ(z)]− Ez∼q[logqφ(z|xi)]
= Ez∼q[logpθ(xi|z) + logpθ(z)]− Ez∼q[logqφ(z|xi)]
= Ez∼q[logpθ(xi|z)] + Ez∼q[logpθ(z)− logqφ(z|xi)]

= Ez∼q[logpθ(xi|z)]− Ez∼qlog[
qφ(z|xi)
pθ(z)

]

= Ez∼q[logpθ(xi|z)]−DKL(qφ(z|xi)||pθ(z))

Hence, we get the final expression of the loss function which is the negative lower bound of the likelihood for
one sample point:

−L(θ, φ,xi) = −Ez∼qφ(z|xi)[logpθ(xi|z)] +DKL(qφ(z|xi)||pθ(z)) (9)

The red part is the reconstruction error and the blue part is the regularizer.
We need to maximize the variational lower bound by optimizing the parameters φ and θ of the neural network.
In simple words, on the RHS:

• We need to minimize the divergence between the estimated latent vector and the true latent vector.

• We need to maximize the expectation of the reconstruction of data points from the latent vector.

Let’s explain why these two terms are named so in the following subsection.

3.2 Example of Loss function

The usual choice of encoder and decoder are multivariate Gaussian distribution, and assume the prior distribu-
tion pθ(z) be normal distribution. Then, we use this case as an example to derive the explicit expression of the
loss function.
The encoder is

qφ(z|x) = N (z;µφ(x),Σφ(x)) (10)

The decoder is
pθ(x|z) = N (x;µθ(z),Σθ(z)) (11)

Assume the prior distribution is
pθ(z) = N (µ3(θ),Σ3(θ)) (12)

Where µθ, µφ and Σθ,Σφ are arbitrary deterministic functions with hyperparameter θ, φ that can be learned
from data using neural network. Σ is usually constrained to be a diagonal matrix which is easy to calculate.
The pdf of normal distribution of a multivariant r.v. x = [x1, ..., xk] is

N (x;µ,Σ) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (13)

where k is the dimension of x.

Then, the first term of loss function is

Ez∼N (z|µφi,Σφi)[logN (xi;µθi,Σθi)] = −k
2
log(2π)− 1

2
Ez∼N [log|Σθi|+ (xi − µθi)TΣ−1

θi (xi − µθi))] (14)

The expectation could be approximated by MC method which will be introduced later.

Ez∼N (z|µφi,Σφi)[logN (xi;µθi,Σθi)] ≈ −
k

2
log(2π)− 1

2

L∑
l=1

[log|Σθi(z(l))|+(xi−µθi(z(l))TΣ−1
θi (z(l))(xi−µθi(z(l))))]

(15)

3

The last term of the above equation (14) is square norm which could be treated as the reconstruction error.
The second term of loss function is

DKL(N (µφi,Σφi)||N (0, I)) =
1

2

[
−log|Σφi| − p+ tr(Σφi) + µTφiµφi

]
(16)

This term is called regularizer which will make sure that the encoder will not too far away from the normal
distribution. In other words, the variance of encoder can’t be too small.
If Σφ is diagonal, then, µφ = [µ1, ..., µp], Σφ = diag{σ1, ..., σp},

DKL(N (µφ,Σφ)||N (0, I)) =
1

2

[
−log|Σφ| − p+ tr(Σφ) + µTφµφ

]
(17)

=
1

2

p∑
i=1

[−1− logσi + σi + µ2
i] (18)

The KL divergence of any two multivariate Gaussian is given as follows:

DKL(N (µ1,Σ1)||N (µ2,Σ2)) =
1

2

[
log
|Σ2|
|Σ1|

− p+ tr(Σ−1
2 Σ1) + (µ1 − µ2)TΣ−1

2 (µ1 − µ2)

]
(19)

3.3 encoder N (z;µφ, diag{σj}Ip×p) and decoder N (x;µθ, Ik×k)

Note: In my notation in this subsection and next subsection, σ, ξ stand for variance instead of standard de-
viation as usual. This is aimed for simplicity of the expression of loss function. Since we will see later, the
covariance matrix is computed by using a neural network approximate logσ as a whole.

If for each data point x, we only sample one z, then, the loss function is defined as follows:

−L(θ, φ,X) =
k

2
log(2π) +

1

2

n∑
i=1

(xi − µθi)T (xi − µθi)−
1

2

n∑
i=1

p∑
j=1

(log(σij)− σij) +
1

2

n∑
i=1

µTφiµφi −
p

2
(20)

3.4 encoder N (z;µφ, diag{σj}Ip×p) and decoder N (x;µθ, diag{ξm}Ik×k)
If for each data point x, we only sample one z, then the loss function is defined by

−L(θ, φ,X) =
k

2
log(2π) +

1

2

n∑
i=1

k∑
m=1

(logξim) +
1

2

n∑
i=1

(xi − µθi)T

ξim
(xi − µθi) (21)

−1

2

n∑
i=1

p∑
j=1

(log(σij)− σij) +
1

2

n∑
i=1

µTφiµφi −
p

2
(22)

4 Maximize the loss function via reparameterization trick

Now we get the lower bound of the likelihood, then one could maximize the lower bound to maximize the
likelihood. So we get the following optimization problem:

maxθ,φ

n∑
i=1

L(θ, φ,xi)

In order to maximize the lower bound, one need the derivatives ∇θL and ∇φL. Now, let’s compute the
derivatives.

4.1 estimate ∇θL of individual point

For the first one ∇θL, one can directly differentiate L to get:

∇θL(θ, φ,xi) = ∇θEz∼qφ(z|xi)[logpθ(xi|z)] +∇θEz∼qφ(z|xi)[logpθ(z)]

= Ez∼qφ(z|xi)∇θ[logpθ(xi|z)] + Ez∼qφ(z|xi)∇θ[logpθ(z)]

= Ez∼qφ(z|xi)[
p′θ(z|xi)

logpθ(xi|z)
] + Ez∼qφ(z|xi)[

p′θ(z)

logpθ(z)
]

4

One can use Monte Carlo Method to get the approximation of ∇θL. The MC estimates of the expectations
of some function f(z) w.r.t qφ(z|x) could be formulated as follows:

Ez∼qφ(z|xi)[f(z)] ' 1

L

L∑
l=1

f(z(l)) where z(l) ∼ qφ(z|xi) (23)

Hence, we apply this MC method (23) to the above expression of ∇θL, obtaining our estimation of ∇θL:

∇θL(θ, φ,xi) '
1

L

L∑
l=1

p′θ(z
(l)|xi)

logpθ(xi|z(l))
+

p′θ(z
(l))

logpθ(z(l))
where z(l) ∼ qφ(z|xi) (24)

For the example in last section, the loss function is given by (14-17), then the corresponding estimation of ∇θL
of one point xiis given by

∇θL = ∇θEz∼N (z|µφi,Σφi)[logN (xi;µθi,Σθi)]

= ∇θ
[
−1

2
Ez∼N log|Σθi| −

1

2
tr(Σ−1

θi Σφi)−
1

2
(µφi − µθi)TΣ−1

θi (µφi − µθi)
]

= −1

2
Ez∼N (z;µφi,Σφi)∇θlog|Σθi| −

1

2
∇θ[tr(Σ−1

θi Σφi) + (µφi − µθi)TΣ−1
θi (µφi − µθi)]

' − 1

2L

L∑
l=1

∇θlog|Σθi(z(l))| − 1

2
∇θ[tr(Σ−1

θi Σφi) + (µφi − µθi)TΣ−1
θi (µφi − µθi)]

where z(l) ∼ N (z|µφ(xi),Σφ(xi)).

4.2 estimate ∇φL of individual point

The gradients w.r.t the variational parameters φ are more difficult to obtain, since the ELBO’s expectation is
taken w.r.t the distribution qφ(z|x), which is a function of φ. In general, the gradient operator and expectation
operator is not commutative.

In order to change the gradient operator and expectation operator, we will play the following trick on the
loss function.

∇φEz∼qφ(z|xi)[f(z)] = ∇φ
∫
qφ(z|xi)f(z)dz

=

∫
∇φqφ(z|xi)f(z)dz

=

∫
∇φqφ(z|xi)
qφ(z|xi)

f(z)qφ(z|xi)dz

=

∫
[∇φlogqφ(z|xi)f(z)]qφ(z|xi)dz

= Ez∼qφ(z|xi)[∇φlogqφ(z|xi)f(z)]

≈ 1

L

L∑
l=1

∇φlogqφ(z(l)|xi)f(z(l)), z(l) ∼ qφ(z|xi)

This gradient estimator exhibits very high variance (see e.g. [BJP12]) and is impractical for our purposes.
For the above gradient, in order to get a practical gradient estimator, we play a reparameterization trick

here so that we could sample from a fixed distribution instead of the keep changing distribution qφ(z|xi) when
φ changed.
Under certain mild conditions (add later) for a chosen approximate posterior qφ(z|x), we can reparameterize
the random variable z ∼ qφ(z|x) using a differentiable transformation gφ(ε,x) of an auxiliary noise variable ε:

z = gφ(ε,x) with ε ∼ p(ε) (25)

The strategies for choosing such an appropriate distribution p(ε) and function gφ(ε,x) will be added later.

Ez∼qφ(z|xi)[f(z)] = Eε∼p(ε)[f(gφ(ε,xi))] '
1

L

L∑
l=1

f(gφ(ε(l),xi)) where ε(l) ∼ p(ε) (26)

5

With this reparameterization, we can formulate the MC estimates of ∇φL with the loss function given by (14-17)
as follows: since encoder is Gaussian, then the function gφ(ε,x) = µφ(x) + Σφ(x) · ε where ε ∼ N (0, I).

∇φL = ∇φEz∼N (z;µφ,Σφ)[logN (x;µθ(z),Σθ(z))]−∇φ[
1

2

[
−log|Σφ| − k + tr(Σφ) + µTφµφ

]
]

= Eε∼N (ε;0,I)∇φ[logN (x;µθ(gφ),Σθ(gφ))]−∇φ[
1

2

[
−log|Σφ| − k + tr(Σφ) + µTφµφ

]
]

'
L∑
l=1

∇φ[logN (x;µθ(g
¯φ

(ε(l)),Σθ(g
¯φ

(ε(l))]−∇φ[
1

2

[
−log|Σφ| − k + tr(Σφ) + µTφµφ

]
]

where z = µφ(x) + Σφ(x) · ε, ε ∼ N (0, I). Note that µθ, µφ and Σφ,Σθ are approximated / implemented by a
neural network which will be discussed in the next section.

5 Neural Network serves as Encoder and Decoder

Now we use the neural network to approximate the distributions. Here we assume the posterior distribution is
a Multi-Gaussian distribution, then we use a neural network with one hidden layer to approximate the encoder:

5.1 Bernoulli MLP as decoder

Let pθ(x|z) be a multivariate Bernoulli:

y = EncoderNeuralNetφ(z)

qφ(z|x) = Bernoulli(z;y)

More specific, probabilities y of multivariate Bernoulli are computed from z with a fully-connected neural
network with a single hidden layer

logp(x|z) =

k∑
i=1

xilogyi + (1− xi) · log(1− yi) (27)

where y = fσ(W2tanh(W1z + b1) + b2) (28)

where fσ(·) is the elementwise sigmoid activation function, and θ = {W1,W2, b1, b2} are the weight and biases
of the MLP.

5.2 Gaussian as encoder and decoder

The encoder or approximate posterior qφ(z|x) can be parameterized using deep neural networks. Then, the
variational parameters φ include the weights and biases of the neural network. For example,

(µ, diag{logσ2
i }) = EncoderNeuralNetφ(x)

qφ(z|x) = N (z;µ, diag(σ2
i))

where i = 1, ..., k with k be the dimensional of x. σ2
i is the variance of xi Typically, we use a single encoder

neural network to perform posterior inference over all data points in our dataset. Hence, VAEs employ a strategy
with global variational parameters which is difference to traditional variational inference methods where the
variational parameters are not shared, but instead separately and iteratively optimized per data point.

5.2.1 Gaussian with diagonal covariance matrix

Let me give a more specific example to indicate how to implement encoder neural network. let encoder and
decoder be a multivariate Gaussian with a diagonal covariance structure:

logp(x|z) = logN (x;µ, σ2I) (29)

where µ = W4h+ b4 (30)

diag{logσ2
i }ki=1 = W5h+ b5 (31)

h = tanh(W3z + b3) (32)

where W3,W4,W5, b3, b4, b5 are the weights and biases of MLP and part of θ when used as decoder. When this
network is used as an encoder qφ(z|x), then z and x are swapped, and the weights and biases are variational
parameters φ.

6

5.2.2 Gaussian with full covariance matrix

6 Implementation

In this section, we focus on the implementation of VAE in PyTorch. We create dataset by sin(x+ y), so (x, y)
is the dataset, sin(x+ y) is the corresponding target.

References

[1] Diederik P Kingma and Max Welling. “An introduction to variational autoencoders”. In: arXiv preprint
arXiv:1906.02691 (2019).

7

